北京時間6月12日晚8點,大家期待已久的iCANX Talks 第九期即將重磅來襲,本期是iCANX與ACS Nano聯合推出的Rising Star Lecture(青年科學家論壇),邀請了三位行業新星為大家帶來最新科研成果。韓國標準與科學研究所的高級研究員Miso Kim通過構建包括具有單個或多個缺陷的聲子晶體(PnCs)、彈性與聲學梯度折射率聲子晶體(GRIN PnCs)和超表面結構等來實現能量的聚集和採集。德克薩斯大學奧斯汀分校的魯南姝教授開發了一種新型的「切割-焊接-粘貼」工藝(減法工藝),可用於快速製作無線多模態柔性電子器件的原型。加州理工學院醫學工程系的高偉教授搭建了可穿戴汗液生物傳感平臺,研發了全雷射加工的「皮膚上的實驗室」以及生物燃料電池驅動的電子皮膚。
The highly expectediCANX Talks Vol.9 will be ceremoniously holed at 8 pm on the evening of June 12 (Beijing time). This time, the Rising Star Lecture (Young Scientist Forum) was jointly launched by iCANX and ACS Nano, and we three distinguished young scientists were invited to bring you the latest scientific reports. Miso Kim’s group in Korea Research Institute of Standards and Science (KRISS) achieve energy focusing and harvesting by various metamaterial designs ranging from phononic crystals (PnCs) with single or multiple defects, elastic and acoustic gradient-index (GRIN) PnCs to metasurfaces. Prof. Nanshu Lu from the University of Texas at Austin. Lu's lab has developed a new approach named 「cut-solder-paste」 process for the rapid prototyping of wireless multimodal e-tattoos. Prof. Wei Gao, from Medical Engineering in Division of Engineering and Applied Science at the California Institute of Technology, has set up a platform of skin-interfaced wearable sweat biosensors and developed laser-engraved lab on the skin and biofuel powered battery-free electronic skin.
在前幾期的iCANX talks直播中,吸引了全球數以萬計的業內學者觀看直播,由研究生組成的學術小組整理撰寫的書面學術報告也深受學者們的喜愛。使得iCANX Talks成為極具影響力的高科技雲端學術峰會。
In the previous 8 weeks iCANX talks live broadcast, it has attracted tens of thousands scholars around the world, and the technical reports writted by the graduate students are also highly popular among scholars. iCANX Talks has gradually grow up to a highly influential high-tech cloud academic summit.
Here comes the three abstracts & Bios of this Friday’s iCANX Talks!
話不多說,先讓小艾給大家詳細介紹今晚的三位重磅嘉賓及演講內容吧!
報告人1
Metamaterial-enabled Mechanical Energy Focusing and Harvesting
超材料賦能的機械能聚集和採集
Miso Kim 高級研究員
韓國標準與科學研究所(KRISS)
Abstract
A key challenge has been insufficient sustainable power generation for practical applications, despite all the benefits of self-powering and green enabling technology. Elastic/acoustic/mechanical metamaterials are artificially engineered structures which exhibit exotic properties such as effective negative dynamic modulus and density. Beyond developing highly efcient devices and materials for energy harvesting (EH), metamaterial-inspired energy harvesting systems have attracted considerable attention as an enabling technology capable of drastically enhancing the output harvesting performance by guiding and focusing the input mechanical wave energy such as sound, vibration and ultrasonic waves into a desired area. Various metamaterial designs have been constructed and integrated into EH systems, including phononic crystals (PnCs) with a defect, locally resonant acoustic/elastic metamaterials, and gradient-index (GRIN) phononic crystals (PnCs). Here, we summarize a collection of our recent advances that push the boundaries to achieve a new paradigm of energy focusing and harvesting using various metamaterial designs ranging from PnCs with a single or multiple defects, elastic and acoustic GRIN PnCs to metasurfaces. These metamaterial-enabled energy harvesting systems can open up a drastic enhancement solution to develop self-powered wireless sensor networks in the structural health monitoring of infrastructures such as bridges/railways/buildings.
儘管可持續發電的技術具有自供能和綠色環保的優勢,但是目前的關鍵挑戰在於這種可持續發電的技術還不足以運用於實際當中。彈性的、聲學的和機械的超材料是人為設計出來的結構,具有一些獨特的特性,比如有效的負動態模量和密度。除了開發高效的能量收集設備和材料之外,這種受超材料啟發的能量收集系統作為一種使用技術,能夠通過引導和集中輸入的機械波能量(例如聲音,振動和超聲波進入需要的區域)來顯著提高能量輸出收集的性能,因而引起了人們的廣泛關注。已經有一些工作通過構建各種超材料併集成到能量採集(EH)系統當中,包括具有缺陷的聲子晶體(PnCs)、局部共振聲、彈性超材料和梯度指數(GRIN)聲子晶體(PnCs)。在這裡,我們總結了最近的一些進展,這些進展包括使用各種超材料設計,從具有單個或多個缺陷的PnCs,彈性和聲學GRIN PnCs到超表面,實現了一種新的能量聚集和收集的範例。這些研究成果讓我們突破了現有科學研究上的邊界,同時這些支持超材料的能量採集系統也將可以為在橋梁、鐵路、建築物等基礎設施的結構健康監測中開發自供電無線傳感器網絡提供極大的增強解決方案。
Biography
Dr. Miso Kim is a senior research scientist at Korea Research Institute of Standards and Science (KRISS). She received her undergraduate degree in Materials Science and Engineering from Seoul National University, South Korea (2004). She received her M.S. (2007) and Ph.D. degrees (2012) in Materials Science and Engineering from the Massachusetts Institute of Technology (MIT). She joined KRISS as a senior research scientist in 2012 and has happily pursued her passion for research at KRISS since then. Her primary research interests cover analytical modeling, design, and experimental characterization of piezoelectric materials and smart structures (including mechanical metamaterials) for energy harvesting and sensing. She’s been a Principal Investigator (PI) of several research projects funded by the Korean Government including the project titled 「Development of High-efficient Energy Focusing and Harvesting Systems for IoT Networks」 ($2M/year).
Miso Kim博士是韓國標準與科學研究所(KRISS)的高級研究科學家。她於2004年獲得韓國首爾國立大學材料科學與工程的學士學位,於2007年在麻省理工學院(MIT)獲得材料科學與工程的碩士學位,並於2012年獲得麻省理工學院(MIT)材料科學與工程的博士學位,同年加入KRISS擔任高級研究員。從那之後,她一直潛心於KRISS從事研究工作,她的主要研究方向包括用於能量收集和傳感的壓電材料和智能結構(包括機械超材料)的建模分析、設計和實驗表徵。她曾主持多個韓國政府資助的研究項目,其中包括每年兩百萬美元資助額度的項目-「開發用於物聯網的高效能源聚集和採集系統」。
Keywords
Metamaterials超材料;structural construction 結構構建; phononic crystals 聲子晶體;energy focusing and harvesting 能量聚集與捕獲; self-powered wireless sensor networks 自供電無線傳感器網路.
報告人2
Mechanics and Manufacture of Multimodal E-Tattoos
多模態電子紋身的力學特性與製造工藝
Prof. Nanshu Lu
University of Texas at Austin
魯南姝教授 德克薩斯大學奧斯汀分校
https://lu.ae.utexas.edu/index.php
Abstract
Merging human body with electronics and machines can enable internet of health (IoH), human-machine interface (HMI), as well as augmented human capabilities. However, bio-tissues are soft, curvilinear and dynamic whereas wafer-based electronics are hard, planar, and rigid. Over the past decade, stretchable electronics have emerged as a result of new materials development, structural design and manufacturing processes. In particular, epidermal electronics, a.k.a. electronic tattoos (e-tattoos), represent a class of stretchable circuits, sensors, and stimulators that are ultrathin, ultrasoft and skin-conformable. This talk will address the mechanics such as the bendability, stretchability, and conformability of the e-tattoos. It will introduce a dry and freeform (subtractive) 「cut-solder-paste」 process for the rapid prototyping of wireless multimodal e-tattoos. This method is applicable for thin film metals, polymers, ceramics, as well as 2D materials and can easily incorporate integrated circuits to the stretchable e-tattoos. The e-tattoos can laminate at different locations of human skin for the synchronous and continuous tracking of electrophysiology (ECG, EEG, EMG, EOG), mechanophysiology (respiration, seismocardiogram, blood pressure, etc.), as well as thermophysiology etc.. In addition to sensing, the e-tattoos can also be used as personalized treatment and therapeutic devices. For wireless operation, we leverage near field communication (NFC) for wireless charging on-the-go and Bluetooth low energy (BLE) for wireless data transfer. A modular and reconfigurable e-tattoo concept will be introduced. Finally, a vision for closed-loop wearables for sensing, diagnosis, and treatment will be presented.
將人體與電子器件和機械融合在一起可以實現健康網絡(IoH)、人機互動(HMI)以及強化的個體能力。然而,生物組織是柔軟、曲線和動態的,但基於晶圓製造的電子器件是堅硬、平面且剛性的。在過去的十年中,隨著新材料的開發、結構設計以及製備工藝的發展,出現了可拉伸電子器件。尤其是皮膚表面的電子器件--又稱電子紋身(e-tattoos)--代表了一類可拉伸電路、傳感器和激勵器,具有超薄、超柔軟且貼合皮膚的特性。本次講座將探討電子紋身的力學特性,如可彎曲性、可拉伸性和貼合性。我們將引入一種乾燥、自由的「切割—焊接—粘貼」工藝(減法工藝),用以快速製作無線多模態電子紋身的原型。該方法適用於金屬薄膜、聚合物、陶瓷以及二維材料,能夠輕鬆地將集成電路與可拉伸電子紋身集成在一起。我們能將電子紋身層壓在人體皮膚的不同位置,同步、連續地跟蹤電生理學信號(如ECG、EEG、EMG、EOG)、機械生理學信號(如呼吸、心震圖、血壓等),以及熱生理學信號等。除了用於傳感,電子紋身也能夠用於個性化治療以及醫療器械當中。在無線技術方面,我們利用近場通信(NFC)進行無線充電,利用低功耗藍牙(BLE)進行無線數據傳輸。本次講座還將介紹模塊化、可重新配置的電子紋身的概念。最後會簡單展望用於傳感、診斷和治療的閉環可穿戴設備。
Biography
Dr. Nanshu Lu is currently Temple Foundation Endowed tenured Associate Professor at the University of Texas at Austin. She received her B.Eng. from Tsinghua University, Beijing, Ph.D. from Harvard University, and then Beckman Postdoctoral Fellowship at UIUC. Her research concerns the mechanics, materials, manufacture, and human integration of soft electronics. She has published more than 90 journal articles with more than 12,000 citations. She has been one of the founding Associate Editors of Soft Robotics. She has been named 35 innovators under 35 by MIT Technology Review (TR 35) and has received NSF CAREER Award, multiple DOD Young Investigator Awards.
魯南姝博士現任德克薩斯大學奧斯汀分校天普基金會特聘終身副教授。她於清華大學和哈佛大學分別取得了學士學位和博士學位,其後在伊利諾伊大學香檳分校以貝克曼博士後研究員身份開展工作。她的研究領域涉及柔性電子的力學、材料、製造和人體集成等多個方向,累計發表90餘篇期刊文章,引用量超過12000次。魯南姝博士是Soft Robotics的創始副編輯之一,被MIT Technology Review(TR 35)評為35歲以下的35位創新者,並獲得了NSF職業獎和多個DOD青年研究者獎。
Keywords
flexible electronics 柔性電子;e-tattoos 電子紋身:subtractive technology 減法工藝:wireless transmission 無線傳輸;sensor 傳感器。
報告人3
Skin-Interfaced Wearable Sweat Biosensors for Personalized Healthcare
用於個性化醫療健康的可穿戴汗液生物傳感器
Professor Wei Gao
California Institue of Technology
高偉教授 加州理工學院醫學工程系
www.gao.caltech.edu
Abstract
The rising research interest in personalized medicine promises to revolutionize traditional medical practices. This presents a tremendous opportunity for developing wearable devices toward predictive analytics and treatment. In this talk, I will introduce our recent advances in developing fully-integrated skin-interfaced flexible biosensors for non-invasive molecular analysis. Such wearable biosensors can continuously, selectively, and accurately measure a wide spectrum of sweat analytes including metabolites, electrolytes, hormones, drugs, and other small molecules. These devices also allow us to gain real-time insight into the sweat secretion and gland physiology. The clinical value of our wearable sensing platforms is evaluated through multiple human studies involving both healthy and patient populations toward physiological monitoring, disease diagnosis, and drug monitoring. This talk will also feature our very recent works on laser-engraved lab on the skin and biofuel powered battery-free electronic skin toward metabolic/nutritional management as well as dynamic stress monitoring. These wearable and flexible devices could open the door to a wide range of personalized monitoring, diagnostic, and therapeutic applications.
基於柔性生物電子技術與功能材料器件的深入研究,個性化醫療健康領域得以快速發展,為病情診斷與術後治療相關的可穿戴電子、柔性生物傳感帶來了令人振奮的研究契機。在這裡,我將介紹我們在研發全集成皮膚界面的柔性生物傳感器方面的相關工作,針對汗液中各類生物標誌物,包括代謝物、電解質、激素、藥物以及其他各類小分子等,進行了非侵入式的連續準確監測。通過健康人群與病患群體的臨床醫學研究,在生理信息監測、疾病診斷預警與藥物輸運等方面,對柔性生物傳感器進行了可行性評估。在此基礎上,我將進一步展示我們在實現新陳代謝健康管理與動態壓力監測等方面的最近進展,研發了全雷射加工的「皮膚上的實驗室」以及生物燃料電池驅動的電子皮膚。這些可穿戴汗液生物傳感平臺的搭建,為實時監測-原位診斷-精準治療的個性化醫療健康領域帶來了全新的發展思路。
Biography
Wei Gao is an Assistant Professor of Medical Engineering in Division of Engineering and Applied Science at the California Institute of Technology. Originally from China, he earned his BS in mechanical engineering at Huazhong University of Science & Technology and his master’s in precision instruments from Tsinghua University. He received his Ph.D. in Chemical Engineering at University of California, San Diego in 2014 as a Jacobs Fellow and HHMI International Student Research Fellow. In 2014-2017, he was a postdoctoral fellow in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley.
He a recipient of IEEE Sensor Council Technical Achievement Award, Sensors Young Investigator Award, MIT Technology Review 35 Innovators Under 35 Global List (TR35) and ACS Young Investigator Award (Division of Inorganic Chemistry). He is also a member of Global Young Academy and ACS Nano Junior Fellow. His research interests include wearable devices, biosensors, flexible electronics, micro/nanorobotics, and nanomedicine. He has authored 100 publications in these fields and his articles have been cited more than 11,500 times (h-index: 56) as of April 2020. His work has been covered in a number of media worldwide including Nature, Science, The Wall Street Journal, New York Times, Time, Fortune, The Economist, Washington Post, NBC News, Discovery News, BBC News, Daily Mail, The Guardian, The Times, LA Times, Newsweek, Forbes, Fox News, Xinhua, Scientific American, IEEE Spectrum, MIT Technology Review, etc.
高偉教授現為加州理工學院醫學工程系助理教授,2007年本科畢業於華中科技大學機械學院,2009年於清華大學精密儀器系獲得碩士學位,2014年從加州大學聖地牙哥分校獲得化學工程博士學位,並獲得Jacobs Fellowship與HHMI International Student Research Fellowship的資助。2014年至2017年期間,在加州大學伯克利分校電子工程與計算科學系開展博士後工作研究。
高偉教授曾獲評國際電氣與電子工程師協會(IEEE)傳感器理事會技術成就獎、美國化學學會(ACS)青年研究員獎等諸多獎項,入選麻省理工技術評論TR35全球榜單,並被選為全球青年學院會員與美國化學學會期刊ACS Nano的Junior Fellow。他的研究方向包括可穿戴設備、生物傳感器、柔性電子、微納機器人與納米醫學等。在相關領域發表學術論文近百篇,論文總引用次數超過11500次,H因子為56,相關工作被自然,科學,紐約時報,時代周刊,華爾街日報,經濟學人,新聞周刊,財富,新華網等世界範圍內多家知名媒體廣泛報導。
Keywords
wearable devices 可穿戴設備;skin-interface 皮膚界面;sweat biosensors 汗液生物傳感器; personalized healthcare 個性化醫療;electronic skin 電子皮膚
當然,除了三位重磅嘉賓,我們的主持人陣容也十分強大,分別是來自美國加州納米系統研究中心,加州大學洛杉磯分校的Paul S. Weiss教授、美國德雷塞爾大學納米材料研究所及材料科學與工程系主任Yury Gogotsi教授,和北京大學信科學院的張海霞教授!
每期iCANX Talks 直播結束後,組委會都會安排iCANX Talks學術小組撰寫學術報告總結,優質的學術總結報告廣受大家好評。這一獨特的參會聽取學術報告並撰寫總結報告的新形式,既為感興趣的參會者和讀者深度理解相關技術提供了幫助,也為研究生同學停課不停學,在家深入開展科研學習提供了平臺。
收看直播請點擊:talks.ican-x.com