挖掘人工智慧行業的優質標的_新財富網

2020-12-15 新財富網

發布時間:2019年10月30日

摘要:

工智能技術通用性強,可以廣泛應用在社會生產生活中,當前安防、金融、教育、醫療、自動駕駛、交通、消費品、工業生產是主要應用領域。某個人工智慧下遊應用領域的IT化程度越高、試錯成本越低,則其近幾年可達的市場規模將越大。根據此原則進行判斷,下遊領域近幾年的市場規模將是安防>金融>消費品>教育>交通>工業生產>醫療=自動駕駛。根據國務院的《新一代人工智慧規劃》,到2030年,下遊核心產業規模將達萬億元。

正文:

■ 人工智慧下遊場景多樣,市場空間達萬億元。  人工智慧技術通用性強,可以廣泛應用在社會生產生活中,當前安防、金融、教育、醫療、自動駕駛、交通、消費品、工業生產是主要應用領域。根據國務院的《新一代人工智慧規劃》,到2030年,下遊核心產業規模將達萬億元。

■ 下遊應用領域的近年市場規模可以從IT化程度、試錯成本兩個維度進行判斷。  某個人工智慧下遊應用領

1.人工智慧下遊:場景多樣化、長期空間巨大

人工智慧產業鏈可以分為上中下遊,我們在上篇報告裡重點分析了上中遊的行業發展情況、競爭格局以及重點企業的經營特點,本篇報告我們將重點分析產業鏈下遊的發展情況。

人工智慧產業鏈下遊指的是將人工智慧技術在各個行業中實際應用的企業,這些企業將技術和場景結合併落地,既需要一定的人工智慧技術應用能力又需要在相應行業的經驗和實施能力,當前人工智慧應用落地比較多的下遊行業包括安防、金融、教育、醫療、自動駕駛、交運、消費品、工業生產等。 

1.1人工智慧下遊應用場景豐富多樣,橫跨眾多領域應用

從圖1中我們不難發現,相比產業鏈的中上遊,下遊的應用場景明顯豐富很多,橫跨了從TO G、TO B到TO C的多個領域。

我們在圖中列出的重點下遊應用場景有八個,然而實際的場景遠遠不止,比如政務、司法、快遞、零售、電力、智能穿戴、社交等也都是當前正在快速發展和應用人工智慧技術並落地的領域,為了便於簡化,都包含在其他類裡。

豐富的應用場景充分體現了人工智慧技術基礎性的特點,其未來將長期在各方面逐步改變人類的生活和生產方式,對人類社會產生積極而深遠的影響。

1.2下遊是人工智慧落地主力軍,遠期市場達萬億元

人工智慧下遊產業的市場空間,理論上應當分別計算各個子行業的空間進行加總。但由於下遊牽涉到的行業非常多,同時這些子行業也都在快速發展中,對其空間的估算結果往往是定性和數量級的估算,我們認為更有意義的是從宏觀角度,定性的把握行業的發展趨勢。

我們採用2017年國務院印發的《新一代人工智慧發展規劃》的數據,來對未來人工智慧產業的下遊空間進行估算。根據規劃,到2030年,我國的人工智慧核心產業規模將達到1萬億元,而相關產業規模將達到10萬億元,本文定義的產業鏈下遊更接近於發展規劃所稱的核心產業。

同時我們也針對下遊的各主要子行業進行了市場空間大致的估算,進行加總後和《新一代人工智慧發展規劃》的數據基本吻合。

相比上中遊而言,雖然技術水平要求不高,但由於下遊是人工智慧落地主力軍,總體市場規模要更大。

1.3人工智慧下遊應用領域近年可達的市場規模可以從IT化程度以及試錯成本兩個維度進行判斷

面對紛繁複雜的下遊應用領域,我們面臨的首要問題是進行行業的選擇和判斷,然而這是十分困難的。一方面所有的下遊領域從業者都自稱AI技術對行業影響巨大,能大幅提升效率,改變行業的面貌;另一方面如果從中長期來看,這些提升和變化確實存在較大可行性。

然而通過對具體子行業的深入分析及實地調研後,我們發現,不同應用領域AI技術實際推進的速度差別較大,經營狀況和業務模式也各有特點。

進一步研究我們發現,經營狀況和業務模式的差異更多是由各子行業本身的行業特性所決定,只能具體行業具體分析,但是AI技術在行業內實際推進的速度則具備一定的共性和規律性,我們可以通過  IT化程度    試錯成本  這兩個維度對未來的推進速度進行前瞻性的判斷:

 IT化程度指的是該領域內的主要應用場景中,在人工智慧技術應用之前,已經實現了基礎的IT化和自動化。這個維度之所以很重要,是因為當前主流的人工智慧技術均發源於計算機科學,其理論的研究、技術的實現、工程的落地均離不開大量IT設施以及系統的支撐。不同領域的IT化程度差別很大,比如在金融領域,現有系統的IT化程度已經很高,大量的業務交易可以線上實現,存量的IT系統非常複雜完善,那麼無論是人臉識別還是自動化交易,只要在現有IT系統中加入最新訓練的算法,匹配相應的場景,就能迅速實現其功能;而在醫療領域,現有的治療模式還是以醫生和病人的一對一方式為主,不同醫院之間的基礎IT數據都尚未打通,IT化程度非常有限,如果需要將AI技術運用到相應領域需要進行系統建設的難度和工作量非常大。

 試錯成本:指的是該領域的主要場景中,利用AI技術改變原有模式的風險,也即AI技術如果搞錯了,是否會有很大的影響或者後果。如在安防領域,試錯的成本就相對較低,本身傳統的安防就不具備自動識別犯罪分子的功能,如果有遺漏並不會造成損失,最壞情況下將正常人識別成犯罪分子,也可以通過人工識別或者實際驗證得到修正。而在某些領域比如L4級別的自動駕駛,試錯成本就非常高,一旦系統出現問題可能導致事故和人員傷亡。

總到來說,IT化程度越高、試錯成本越低,某領域的推進速度則越快,而越快的推進速度則代表了近年可達的市場規模越大。

圖3代表的是我們對主要AI下遊領域IT化程度、試錯成本這兩個維度的判斷分析:

通過該圖我們可以分析得到主要AI下遊領域近年可達的市場規模,安防>金融>消費品>教育>交通>工業生產>醫療=自動駕駛。

下遊領域的選擇應將近年市場規模和行業特點綜合來看,我們上面已經總結出判斷近年市場規模的系統性方法,接下來將對各子行業的特點及其和AI結合的情況具體進行分析,限於篇幅,將主要聚焦在安防、金融、教育、交通、醫療這五個關注度較高的下遊領域。

2.智能安防市場空間達千億,產品類公司中的龍頭企業將是核心玩家

隨著計算機視覺技術的快速發展,近年安防成為了AI技術運用最多最快的領域之一,智能安防也成為了人工智慧下遊行業中最炙手可熱的應用方向,而這也和我們之前對於行業發展速度的判斷是一致的。   

2.1 國內安防市場空間達萬億元,產品類公司具備規模效應

近年來,隨著計算機視頻監控技術的發展,硬體成本的降低,平安城市、智慧城市、雪亮工程的不斷推進,安防行業在過去幾年取得了飛速發展。據中安網以及HIS統計,2011-2017年中國安防市場規模CAGR高達14.5%,高於全球市場(+8.5%),其中政府、大企業客戶貢獻最大,民用市場較小。

未來隨著監控成本的不斷下降,智能化的不斷增強,政府端的安防工程仍將穩步推進,而商業端、民用端的需求會快速增加,國內安防市場仍將保持10%以上的較快增速。據IHS預測,2019年全球安防市場規模將達到3000億美元,增速達8%;據中安網預測,2019年中國安防市場規模將達到8700億元,增速將達15%。

安防市場的結構佔比來看,安防工程佔比最高,中安網的數據表明,2017年中國安防行業產值分布中,安防工程佔比為62%,安防產品佔比為30%,服務及其他佔比為8%。

儘管安防工程的佔比最高,但是由於工程類實施具備很強的地域性特點,市場天然分散,每個地區工程服務商都有一定生存空間,因此該領域的集中度一直很低。中安網的數據顯示,2014年全國範圍內的安防工程類生廠商數目達到14000個,並且逐年增加達到了2018年的16000個。

相比而言,安防產品類企業則具備較強的規模化效應,因此近年的市場集中度在不斷提升。中安網的數據顯示,全國範圍內的安防產品類企業數量已經由2014年的接近10000個逐年遞減到2018年的4000個。

2.2 AI技術大幅拓展安防的價值,滲透率還有較大提升空間
歷史上,安防行業經歷了從模擬化到數位化、低精度到高清晰、單機部署到網絡化的發展過程,而AI技術尤其是計算機視覺技術的發展使得安防行業從「看的到看的清」進化成「看的懂」,進入智能化發展的新階段,將安防的應用領域和應用價值大幅度拓展。在傳統的公安領域,AI已經助力安防實現自動發現嫌疑犯等高價值應用,而在很多新興領域,視頻識別技術也可大大拓展安防的使用價值。

由於AI技術在安防的多個應用領域都能產生較大價值,從2017年開始,AI產品在安防產品廠商中的銷售佔比迅速提升,但是當前的滲透率仍然有限,未來還有較大提升空間。艾瑞諮詢的數據表明,安防前端產品的營收佔比從2017年的5%提升到2018年的10%;後端產品的營收佔比從17%提升到28%。

隨著安防產品的AI滲透率的不斷提升,未來一段時間內,中國的智能安防軟硬體市場依然將保持較快增速。據艾瑞諮詢預測,國內智能安防2018 年的市場規模達 135 億元,預計 2019 年市場仍將保持高增速,到 2020 年市場規模可達到 453 億,長期而言,若安防產品中的AI滲透率能達到30%,智能安防的市場規模將達千億元。

2.3 安防產品類龍頭企業優先受益於AI技術,強者愈強 

如前文所述,安防工程子行業規模雖然明顯較大,但該領域市場集中度提高難度較大,因此這類企業在安防智能化的浪潮中屬於被動參與者。

安防產品類企業雖然行業佔比較低,但是技術門檻高,是實現安防智能化的關鍵,同時其集中度也在近年不斷提升,行業小企業迅速出清,因此是安防智能化浪潮中的主導力量。

 而在中大型企業中,龍頭企業的優勢則更為明顯,通過分析近年數據我們可以看到,安防龍頭的業務增速遠遠快於行業平均增速,同時大幅也快於行業內其他中大型企業。2008~2018年,龍頭企業海康、大華的營收複合增速達到41%,遠大於15%的行業平均增速,也大幅高於行業內其他上市公司平均25%的增速。同時IHS的數據顯示,這兩家企業的合計全球市佔率也由2012年的12.3%增加到2018年的37.4%。可以說雙寡頭壟斷的格局已經形成。

過去安防產品的龍頭企業之所以快速發展,是因為其具備較強的技術研發優勢和產品整合能力,進而構築了研發、成本、渠道、產品溢價等全方位的優勢和壁壘;AI時代到來後,智能化的需求和應用將給行業龍頭構築更高的壁壘,具體包括:

 研發優勢進一步擴大:為了順應AI時代的安防趨勢,海康和大華均加大了研發投入。根據2018年年報的數據,海康和大華的研發人員總數分別為1.6萬和8千, 而第二梯隊企業的研發人員總數一般在幾百的量級;海康和大華的研發費用分別為44.8億元和22.8億元,而第二梯隊企業的研發費用一般僅在億元量級。同時海康和大華均成立了高規格的AI研究院,與ADI、TI等全球頂尖企業建立聯合實驗室,打造自己的安防AI核心競爭力。未來隨著AI技術在安防領域的滲透率不斷提升,龍頭企業的技術優勢將進一步擴大。

■ 成本優勢進一步增強:AI時代安防領域的一個重要增量是AI晶片的迅速增加,在這個領域海康和大華均開始提前布局,著手進行自研晶片的開發。安防領域的AI晶片技術難度適中,屬於特定領域的晶片,和國內AI晶片行業當前的發展水平契合度較高,剛好屬於龍頭企業可以自研而中小企業很難進入的領域。未來隨著自研晶片使用比例的不斷擴大,龍頭企業相比中小企業的成本優勢將進一步凸顯。

■ 數據優勢開始顯現:安防類AI產品的算法也需要的大量的數據進行訓練,當前行業內龍頭企業的市佔率很高,對數據的佔有也具備絕對的優勢,擁有各個行業、各個應用場景的海量數據以及使用經驗。這些數據能助力龍頭企業根據不同的行業和應用場景,訓練出多個精確定製化的算法,已取得更好的智能監控效果。

展望未來,人工智慧將給安防領域帶來更多的增量和變數,而其中影響最大的是安防產品類領域,其中的龍頭公司海康威視和大華股份已經積極布局進行AI時代的轉型。展望未來,他們相對行業內其他公司的領先優勢將進一步加深,有望佔據AI安防時代的先機,不斷擴大自己的業務規模和市佔率。

值得注意的是,雖然在傳統安防企業中,海康和大華的競爭優勢非常明顯,但是現在行業逐步有新的玩家開始進入,比如華為和阿里就在大力進入AI+安防的領域。以華為為例,近年華為安防已經從三級部門提升至二級部門,成為公司重要發展戰略。2017年聚焦投入安防,2018年發布軟體定義攝像頭架構,2019年進一步提出「2+4+N」戰略。華為的優勢在於其強大的研發實力以及安防AI晶片的龍頭地位。對於AI安防領域的競爭態勢,我們也需要密切跟蹤這些新進企業的經營狀況。

3.智慧金融市場空間大,落地場景多,參與企業多元化

人工智慧技術在金融領域的應用速度也很快,蓋因金融科技的快速發展,已成為金融行業的核心支柱力量。根據IDC的預測,到2020年,銀行、保險、證券這三大金融核心領域的IT市場規模將達到2500億元,而其中銀行IT的市場規模就達到接近2000億元。

近年來金融行業正在運用AI技術不斷向智慧金融轉型,我們預期未來AI技術在金融科技領域的滲透率將能達到40%以上。

3.1 智慧金融落地場景多樣化、賦能動力充足

智慧金融近年來發展迅速,應用場景豐富而多樣,典型的如智慧網點、智能客服、智能信貸、智能合控、智能投顧、智能投研、智能保險等。在這些場景下金融行業可以通過AI技術提升效率和競爭力,賦能效果顯著,以下做具體介紹。

智慧網點:  網點是商業銀行最重要的服務場所和品牌形象的代表,隨著網絡渠道的發展,銀行不能簡單裁撤網點以節省成本,而是需要進行網點變革,通過以客戶為中心,建設輕型化、特色化、社區化的新型網點,以實現用更低成本對客戶進行更好的服務。新型網點人員少面積小,為了實現對客戶的有效服務,只有通過人工智慧技術的手段,才能實現小面積少人員快速實現對客戶的有效服務。

因此智慧網點應運而生,圖16列舉了人工智慧技術在智慧網點的典型應用,這些應用能大幅提升效能和客戶體驗。

智能客服:  金融業的服務屬性決定了其具有大量客戶溝通運營的需求,銀行業尤其突出。客服作為企業與用戶溝通的直接出口,需要兼具專業解答能力、營銷能力與良好的溝通交流能力。當前,客服行業人員素質參差不齊,高素質客服短缺且成本較高,而智能客服在成本、效率上具備明顯優勢。

智能客服除了可以模擬客服人員和客戶進行溝通外,還可通過語音識別、大數據挖掘技術對銀行海量的通話記錄進行智能分析上,挖掘分析有價值的信息,為服務與營銷提供數據與決策支持,對客戶的運營也能有明顯的提升作用。

智能合控(合規與風控):  反欺詐反洗錢一直是商業銀行和監管部門面臨的核心問題,因此產生了合規與風控的需求。人工智慧技術近年來在這些領域得到了廣泛應用,與傳統的被動式監管相比,AI和大數據分析技術的結合能夠實現對海量數據的實時挖掘,主動發現、智能監控。

2017年人民銀行成立了金融科技委員會,將強化監管科技應用實踐,利用大數據、人工智慧、雲計算等技術豐富金融監管手段,提升跨行業、跨市場交叉性金融風險的甄別、防範和化解能力,這也為智能合控的發展帶來了更多機遇。

智能信貸:  信貸管理是商業銀行的核心業務,智能信貸能基於人工智慧和大數據技術,實現線上信貸業務的全流程優化和監控,提升風控能力和運營效率,降低成本。

精準信用畫像和信貸審批自動化是經營效率提升的主要環節。深度學習算法可利用大數據為用戶建立信用畫像,從而更加前瞻性地反映申請者的信用狀況,快速形成對潛在客戶的風險評估。智能化的決策引擎則利用風險評估數據對借貸形成審批、額度、定價等的判斷,可從貸前、貸中和貸後的各個環節實現信貸業務精細化以及自動化運作。

智能投顧:  智能投顧是人工智慧技術在財富管理領域的應用,它通過一系列智能算法綜合評估用戶的風險偏好、投資目標、財務狀況等基本信息,並結合現代投資組合理論為用戶提供自動化、個性化的理財方案。

智能投顧的核心環節包括:用戶畫像、大類資產配置(投資標的選擇)、投資組合構建和動態優化等。

智能投顧相比人工服務具有專業高效、降低門檻、客觀中立等優勢。

■ 專業高效:相比於傳統投顧,智能投顧更高效。在用戶端,智能投顧通過問卷或網際網路上的留存數據進行用戶的投資畫像,快速針對客戶的基本信息、風險偏好和投資目標等進行綜合評估,在資產端平臺自動進行分析和產品匹配,生成投資組合建議。
■ 降低門檻:傳統投顧主要針對高淨值客戶,覆蓋範圍有限,服務成本高,起步資金門檻在50~100萬元,高端服務需要千萬元級別的資金。而智能投顧則依靠技術優勢,有效節省了人力成本,從而大大降低了服務門檻,可有效覆蓋中產及以下的普通投資者。
■ 客觀中立:傳統投顧完全依賴投資顧問個人的能力和品行,如何保障投資顧問的道德操守,避免人性的貪婪和恐懼,是重要挑戰。而智能投顧通過計算機的大量參與,可有效避免很多人為因素的幹擾。
根據艾瑞諮詢的預測,到2020年,中國智能投顧市場將達1884億元。

智能投研:  指利用機器學習、知識圖譜等技術,將數據、信息和決策進行智能整合,實現數據之間的智能化關聯,自動化地完成信息的收集、清洗、分析和決策等工作。它能提高投研者的工作效率和投資能力。

和人工投研相比,智能投研自動化程度高,能自動從行業新聞、公司新聞、招股書、年報、公告、行業研究報告等半結構化或非結構化數據中批量自動抽取重要信息,並建立知識圖譜,實現數據搜集、事件分析、輿情影響、行行業趨勢分析的一站式服務,具有高效、客觀的優勢。

智能保險:  保險也是對數字和科技要求很高的行業,當前面臨網際網路的巨大挑戰,客戶對險種功能和理賠效率的需求在不斷提升,對公司的精算風控也提出更高要求。人工智慧技術可以從售前、承保、理賠、售後等多個環節提升運營效率,優化定價,為用戶提供個性化的產品推送。

以車險理賠為例,通過運用語音識別、圖像識別等技術,可以實現智能理賠,克服欺詐騙保、理賠時間長等問題。據艾瑞諮詢統計,智能理賠可以帶來40%以上的運營效能提升,將理賠時效從3天縮短至30分鐘。

3.2四大類公司是行業主要參與者,不同維度各具特點

智慧金融領域的主要參與者包括金融機構、金融科技公司、網際網路公司、人工智慧公司。

其中金融機構指的是銀行、保險、證券等金融核心領域的大型金融企業及其子公司如平安科技;金融科技公司指的是長期進行某一特定金融領域信息化工作的公司,典型的如恒生電子、同花順、萬得等;網際網路公司指的是大家熟知的BATJ網際網路巨頭及從其衍生的一些金融服務公司如螞蟻金服、微眾等;人工智慧技術公司指的是近年成立的,掌握最前沿人工智慧技術的公司。

這幾類公司各具特點和競爭優勢,可以從客戶和數據、技術創新能力、業務理解能力、行業經營能力這幾個維度來分析:

  客戶和數據:  金融機構以及網際網路公司最具優勢,其中金融機構擁有最大而全的金融客戶以及數據,網際網路公司擁有最大的C段客戶基礎。部分金融科技公司如同花順也在自己的細分領域擁有大量數據,而絕大部分人工智慧技術公司在客戶數據上十分缺乏。
■ 技術創新能力:人工智慧技術公司和網際網路公司具備相對優勢,其中人工智慧技術公司在AI核心領域的研發應用能力最強,而網際網路公司則具備極強的用戶體驗、產品設計以及綜合運營能力。金融科技公司的優勢特定細分領域的IT開發能力豐富,金融機構的優勢在對金融業務場景理解深刻,相比前兩者的核心技術能力均略有差距。
■ 業務理解能力:金融機構的理解毫無疑問是最深刻的,金融科技公司對自己熟悉的特定領域有較深刻的認識,網際網路公司通過前期的嘗試也對金融業務有一定的理解,而人工智慧技術公司起步晚,理解最薄弱。
■ 行業經營能力:金融機構的牌照最為齊全,金融科技公司和網際網路公司都具備少量金融牌照,而人工智慧技術公司的牌照最為缺乏。

3.3 不同類型公司在不同場景具備競爭優勢 

如前文所述,智慧金融的主要參與者各自具備不同維度的特點,同時智慧金融的應用場景也非常多元化,這些多元化的場景所需要的核心能力各不相同,因此這些參與者和場景存在關聯關係,不同類型的參與者適合進行不同類型場景的建設:

■ 智慧網點適合金融機構和人工智慧技術公司參與,因為該場景非常具體,需要金融機構提供場地,人工智慧公司提供技術,相互結合 。

■ 智能客服的主要優勢參與方是人工智慧技術公司,主要的原因是該場景技術要求高,技術普適性廣,可快速復用,適合技術領先公司參與。

■ 智能信貸則是金融機構、網際網路企業各具優勢。金融企業的優勢在業務經驗豐富、金融數據全面、IT流程成熟穩定,可以基於現有系統,制定符合金融規律的智能信貸模型,高效運行。網際網路企業的優勢在於海量的客戶及部分非金融信息,如騰訊、阿里具備海量到社交和電商信息,他們可以利用這些信息及其先進的大數據處理能力,實現長尾客戶的智能信貸,獲得下沉市場並向中小金融機構賦能。

■ 智能合控的優勢企業是人工智慧公司,主要是因為這項業務技術要求高,既非金融機構的盈利點,同時監管部門也有需求,因此第三方人工智慧公司作為中立的技術提供者有優勢。

■ 智能投顧的優勢參與者是金融機構和金融科技公司,投顧是對金融專業能力要求很高的行業,金融機構是該領域的翹楚,將AI技術應用後可以大幅提升效能;而部分投資領域的金融科技公司如同花順、雪球通過長年積累,掌握大量客戶信息、交易數據,也具備智能投顧的基礎。

■ 智能投研適合金融科技和人工智慧企業參與,因為該領域對數據和技術要求都很高。部分金融科技企業如同花順、萬得具備數據和IT運營能力;部分新型企業如文因互聯、蘿蔔投研則具備技術優勢,可將數據更好整合分析。

■ 智能保險的優勢企業也是金融機構和網際網路公司,保險龍頭機構的數據規模大,行業經驗豐富,網際網路公司則具備更廣泛的客戶基礎和更靈活的應用場景。

根據上述的分析,我們在表5整理了國內主要的智慧金融參與企業,並對其優勢領域進行歸類。

(請查閱PDF版本報告,如需全文請聯繫招商銀行研究院研究管理團隊。)

4.智慧教育市場空間巨大,高價值客戶是關鍵

和安防領域不同,教育領域雖然試錯成本也較低,但過去IT化程度也低,造成其推進過程中遇到的困難比安防領域要大,突出表現在高價值客戶的獲客成本高和留存率低。但是試錯成本低,行業空間大給智慧教育類公司帶來的好處是只要產品過硬,捨得投入營銷費用,往往能獲得營收的快速增長。

4.1 智慧教育中長期市場空間達千億元,當前呈現百花齊放的局面 

教育行業是一個六萬億的市場,因此智慧教育的發展空間很大,根據艾瑞諮詢的預測,到2022年,國內智慧教育的市場空間將達到1724億元。雖然實際的市場發展未必如其預期的這麼迅速,但中長期而言,該領域將達到千億規模基本是行業的共識。

雖然人工智慧技術和教育結合的時間並不長,但是當前的智慧教育已經呈現百花齊放的局面,多個細分領域在快速增長,主要包括自適應教育、智能工具、AI外語培訓等。

自適應教育因材施教,國外發展較成熟,國內處於快速發展期 

自適應教育指的是通過人工智慧技術,進行大數據分析,自動分析學生的知識掌握階段和性格特點,自動調整學生的學習路徑,以幫助學生達到更有效的學習效果、獲得更好的體驗。

自適應教育最大的優勢在於能夠定位到每位學生的知識漏洞,能夠引導學生進行最適合他自己的下一步學習內容和活動,當學生在學習過程中遇到課程難度過高或過低時,課程的難易程度都可以自動調整。老師也可以根據系統提供的學習狀態評估報告來分析每個學生的知識空白,並即時調整學習進度,為每個學生提供個性化教學。所以從理論上說,自適應學習是解決在線教育的「因材施教」問題的潛在可行方案之一,內容、數據與技術是支撐自適應學習系統開發的關鍵。

自適應教育在國外發展較早,相對成熟,國外逐步湧現出了Knewton、DreamBox等教育科技明星公司,根據億歐諮詢的數據,Knewton已經成為美國排名第一的AI+教育公司。

自適應教育之所以在國外得到較快發展,是因為其在教育實踐中體現出了明顯效用, Knewton的實測數據表明,自適應教育相比傳統教育能產生較大的差異性提升。 

緊隨國外發展,國內近年的自適應教育熱度明顯提升,好未來、新東方、乂學等教育公司均陸續推出自適應學習產品。

以乂學教育為例,據公開資料顯示,成立四年來,其下屬的松鼠AI已經累積學生數據近200萬,在全國20多個省300多個城市籤署了1800多家合作學校,同時其營收從2015年的800萬元增加到2018年的10億元,每年都保持400%的速度增長。

展望未來,國內的自適應教育行業具備巨大的發展潛力。
教育行業的智能工具類企業指的是利用AI技術,為老師和學生提供智能化工具服務的公司,當前的核心應用包括拍照搜題以及智能批改:

■ 拍照搜題指的是上傳題目照片,然後系統通過圖像識別、模式匹配等方法自動定位到題料庫中的題目,將解題方法反饋的過程。

■ 智能批改指的是上傳已經完成作答的作業,自動識別並判斷學生作業效果並反饋的過程。

這兩類應用有一定的關聯度,行業內的公司往往是從拍照搜題類應用起家,逐步擴展到智能批改類的應用,行業內的代表公司有作業盒子、猿輔導、作業幫等。

大部分智能工具類企業的基礎工具服務是免費的,這些企業主要是將工具服務作為一個好的入口,獲得足夠多優質的線上用戶,再進一步開展相關增值服務,比如線上課外培訓來獲得收入。

基於免費服務的特性,智能工具類企業迅速獲得了大量用戶。據公開資料顯示,作業幫2018年7月的月活用戶已超過7000萬,付費用戶總數超過500萬。作業盒子2018年底的用戶數量也超過4000萬,覆蓋10萬所學校,獨立日活超過500萬,MAU超1500萬,每日生產學習行為數據超過2億條。

基於龐大的用戶群體,智能工具類企業可以開展低質優價的在線教育服務,營收也獲得了快速增長。據公開資料顯示,預計2016、2017、2018年猿輔導的營收分別為1.2億元,  3億元、15億元,而作業幫、學霸君在2018年的營收也達到了10億元的量級。

不過,需要注意的是,這些企業雖然在工具入口上具備優勢,但是在課外培訓的內容上和行業巨頭有差距,當前新東方、學而思等公司也在大力布局線上培訓,該營收渠道未來將長期面臨巨頭的競爭。

AI外語培訓市場參與者眾多,少兒相比成人更優

外語培訓也是眾多AI公司切入教育賽道的選擇,這些企業有的如流利說是通過積累大量的外語語料庫,通過AI老師實現對多個用戶的低成本智能教學;有的如VIPKID是通過線上外語培訓起家,逐步引入AI技術,生成AI助教,助推實現在線外語教育的個性化。

外語培訓門檻較低,眾多創業者和中小企業不斷進入該領域,因此在線外語培訓競爭激烈較為激烈,對AI 類公司構成了較大挑戰。

外語培訓可分為少兒和成人兩類,相較而言少兒類客單價和留存率高,因為少兒往往注意力和自學能力有限,需要通過老師的引導,付費意願和持續性較強;而成人的學習渠道多樣,付費意願低,時間有限堅持性有限。

國家統計局發布的數據表明,2018年少兒英語培訓市場600億,線上66億需求,近年保持20%的速度增長,其中VIPKID佔據了55%的市場份額,營收向50億的規模邁進。而偏向於成人外語培訓的兩大龍頭英語流利說和51talk的營收目前在10億元的規模,和VIPKID有一定差距,同時由於獲客成本和留存率的問題,上市後依然虧損嚴重。

相比較而言,我們認為AI少兒外語培訓類的賽道相對更優。

4.2 高價值客戶獲客成本高企,留存率低造成行業盈利困難

教育行業是朝陽產業,教育行業的智能化趨勢當前也已經是業界共識,領先AI教育公司的營收表現也不錯,但是當前的絕大多數AI教育公司都出現盈利困難的情況,這主要是由於高價值客戶獲客成本較高和留存率較低。

需要指出的是,我們這裡討論的是高價值客戶,指的是有較強支付意願,願意付出較多金錢如一年幾百元以上的客戶。部分AI教育公司如智能工具類公司由於具備免費和工具兩大屬性,可以低成本獲得大量客戶,但是這些客戶中真正具備較強支付意願的客戶比例很少。

根據公開渠道整理的數據,當前在線教育的高價值客戶的獲客成本很高,從幾百元到上萬元不等,而AI教育屬於在線教育中的新興延展,其獲客成本相對更高。這也導致了部分公司營銷成本高企,如流利說的營銷費用已經超過了營業收入 。

除了獲客成本高昂外,留存率低也是AI教育公司面臨的重大挑戰。由於部分公司的內容和教育效果不及預期,造成很多花費巨額營銷費用吸引來的高價值客戶,並沒有持續購買服務,流失了。

高價值客戶續費率作為企業的核心數據,一般很少公布,但我們可以從部分上市公司的報告推測出其續費率非常有限。從流利說公布的2019年一季報以及半年報可以計算得出,雖然其營收增長,營銷費用高企,但付費用戶數從一季度的110萬下降到了二季度的90萬,隱含的流失率非常高。

高價值客戶獲客成本高企、留存率低這兩大障礙造成當前的AI教育類公司盈利困難。從公開資料梳理,當前的AI教育類公司能獲得正向盈利的不到3%。

4.3 優勢賽道中高價值客戶留存率高的公司有望長期勝出

儘管行業當前面臨盈利困難的問題,但教育智能化的趨勢已經形成,行業內企業營收增長很快,消費者習慣在迅速培養,我們預期未來行業洗牌結束,競爭格局穩定後,龍頭AI教育類公司具備長期發展前景,而當前優勢賽道中高價值客戶留存率高的公司有望長期勝出,這也可以成為我們選擇企業的出發點。

首先是要選擇優勢的賽道。  根據前文的分析,我們認為從賽道排序來說,自適應教育>智能工具類企業>AI少兒外語培訓>AI成人外語培訓,優勢賽道的企業未來發展會更好。

其次是相比高價值客戶獲客成本而言,客戶留存率更為關鍵。

隨著網際網路紅利的逐漸消退,各在線TO C行業的獲客成本均在逐年提升,以京東為例,2012~2017年,京東的獲客成本上漲了4倍,因此未來教育行業獲客成本高企的現狀很難改變。所以對所有的AI教育公司來說,提高客戶留存率,將自己花費大量營銷成本獲取的付費用戶,發展成長期忠誠客戶,是最關鍵的工作。

根據這兩大影響因素,我們將主要的AI教育企業判斷如下,建議銀行主要聚焦在第一二檔的公司。

(請查閱PDF版本報告,如需全文請聯繫招商銀行研究院研究管理團隊。)

另外,值得注意的是,好未來和新東方這兩大教育巨頭也在逐步加大AI技術的投入,未來會是所有AI教育公司的重磅競爭對手。其中好未來的投入更迅速,在2019年8月29日的世界人工智慧大會上,其被科技部宣布依建設智慧教育開放創新平臺。對於AI教育企業,我們同時需要密切關注其和這兩大巨頭的競爭關係。

5.智能交通市場空間達千億,信息化龍頭具備明顯競爭優勢

交通領域的試錯成本和行業壁壘相比教育行業要更高,因此不像教育行業那樣,有那麼多的初創企業參與者和細分賽道領域。同時由於交通領域的IT化建設相對開始較早,部分龍頭企業具備先發優勢,參與智能交通的企業往往是從過往的交通信息化企業轉型而來。

5.1智能交通持續受益於政策,道路和軌道交通是主航道

智能交通能提高運輸效率、緩解擁堵以及提升交通安全,國內政策一直大力支持,在十九大報告也進一步提出中國要建設成為交通強國,從側重投資過度到依靠科技,因此國內未來近年的智能交通市場規模將保持較快增長。

據中國投資諮詢網的預計,2018 年我國城市智能交通市場規模將達到620 億元,未來五年(2018-2022)年均複合增長率約為20.33%,2022 年將達到1300 億元。

智能交通的涵蓋面較廣,主要包括道路、軌道、水運、航運這四大方面。 而根據國家統計局公布的數據,2018年國內旅客出行的主要方式是公路和鐵路運輸,因此道路和軌道交通的市場需求大,是主要航道。

5.2 智能道路系統有望發展成智慧交通大腦,龍頭企業數據優勢明顯

智慧交通大腦指的是利用人工智慧技術,基於自動搜集的海量實時交通數據,進行深度運算,以實現對於交通場景的智能實時調度,達到減少城市擁堵、提升居民出行體驗的目的。

智慧交通大腦實現的關鍵在於對人、車、路信息的搜集以及分析,過去限於技術水平,只能停留在理論的設想,而隨著計算機視覺技術的不斷突破,已可以讓機器智能實時識別道路上的人、車信息及其行為,交通大腦的實現已經不再遙遠。

 數據對於人工智慧算法的訓練非常重要,而智慧城市大腦的決策行為既需要實時又十分繁多,因此歷史和實時的交通數據就極其關鍵。國內的智能道路系統建設企業往往是從傳統的道路信息化企業轉型而來,因此其中的龍頭企業深度介入了國內現有核心道路的信息化系統,不僅包括道路信息,也包括了ETC、交委、交警等道路管理部門的相應信息,具備先發優勢。而對於最核心的人、車、路信息,龍頭企業可以在對現有系統的升級改造過程中,加入AI視覺識別的模塊,以實現對於現有道路的實時信息的獲取。所以從數據獲取的角度來說,龍頭企業的先發競爭優勢很大。

當前國內智能道路交通龍頭是千方科技,其在該領域的市場份額是主要競爭對手的三倍以上。除了拓展現有優勢外,業務層面繼續圍繞智慧交通全面布局,積極和各大車廠合作進行V2X測試;資本層面引入阿里巴巴作為第二大股東,提升自己的技術實力。

我們預期未來,千方科技基於自身的數據、技術和資金的優勢,有望不斷拓展自己在智能道路領域的競爭優勢,朝智慧交通大腦的方向發展,成為智能交通領域的核心企業。

5.3 智能軌道處於快速發展期,綜合具備一體化實施和AI 應用能力的公司有望勝出

雖然總的鐵路運輸旅客人數和公路運輸相比差距較大,但是近年隨著各大城市的地鐵、輕軌等軌道交通建設快速展開,智能軌道企業也迎來了發展良機。

來自中國軌道交通協會的數據表明,國內城市軌道在建線路長度由2013年的四千公裡逐步增加到了2017年的六千公裡,呈穩步上升態勢。與此相應,城市軌交的信息化建設也增長迅速,據中國產業信息網的統計,信息化投資額由2015年的124億元迅速增加到了2017年的187億元,預計到2020年將達到326億元的規模。

軌交信息系統主要包括自動售檢票系統、站臺門系統、綜合監控系統、通信系統這四大模塊。

而隨著AI技術的發展,這四大模塊都可以產生很多新的進步,比如自動售檢票系統可以通過人臉自動識別自動出入,助力乘客享受更便捷的出行和支付體驗;綜合監控系統可以通過視覺技術對乘客、客流、物品特徵進行分析,優化尖峰時段分流管理、可疑物品監測、可疑人員識別,為地鐵安全運營提供技術保障。因此軌交信息化行業正逐步往軌交智能化發展。 

過去的軌交信息化企業往往聚焦於四大模塊中的一個,整體市場較為分散,近年來少數龍頭企業逐步通過內部研發和外部收購等方式,逐步完善了自己的產品結構,全面掌握了四大模塊的核心技術。我們認為,未來隨著軌交信息化向軌交智能化轉變,項目實施難度不斷增加,智能軌交的訂單會越來越傾向於具備一體化實施能力的企業,全面掌握四大模塊的智能軌交企業會有一定競爭優勢。

此外軌道交通領域的安全性要求相比安防更高,有一定的試錯成本,因此對企業的AI技術能力也提出較高要求。雖然在一些核心算法上可以藉助中遊AI技術平臺的力量,但是企業依然需要具備較高的AI技術理解和應用能力,這樣才能做到整體系統的風險可控,保證系統運行的穩定和安全,實現自主可控。因此具備較強AI技術應用能力的企業也會具備競爭優勢。

佳都科技是國內智能軌道交通的領先企業,一方面是在行業內率先全面掌握了智能軌交系統的四大核心技術,另一方面近年也大力投入AI技術的研發,技術方面內部成立了兩大AI研究院;資本方面2015年開始不斷投資優秀AI企業如雲從科技,對於AI技術的理解和應用在國內軌交企業中相對領先。

佳都科技近年來連獲智能軌交的大單,未來有望不斷提升自己在智能軌交行業的市場份額。

需要注意的風險點在於城市軌交建設具有一定的地域性,對於佳都科技是否能在其他城市複製其在廣州的競爭力,尚待觀察。

6.AI+醫療願景美好,短期面臨巨大挑戰

醫療行業雖然空間巨大,但其面臨著IT化程度低和試錯成本高這兩大難題,因此造成當前的AI+醫療更多是雷聲大、雨點小。雖然AI+醫療的參與者眾多,但這些企業往往是初創企業,項目的落地和實際營收困難重重,短期而言面臨巨大挑戰。

6.1 AI+醫療能解決醫療痛點,理論市場空間達千億元

醫療行業是大健康領域的重要分支,近年保持快速增長,前瞻產業研究院的數據表明,國內醫療行業的市場規模由2010年的2133億元增加到了2017年的5901億元,未來仍將保持穩步增長,達到萬億元的規模。

但是當前國內醫療行業依然存在醫生數量不足,培養周期長、高質量醫生缺乏、醫療資源地域分布不平衡等諸多痛點:

■ 醫生數量不足:中國病理醫生與人口比例為 1:70000,而美國為1:2000,差距較大。

■ 醫生培養周期長:獨立上崗醫生培訓周期長達 8 年,導致醫療人力成本高,無法迅速滿足持續增長的醫療需求。

■ 高質量醫生缺乏:在我國全部衛生人員之中,大學本科以下學歷比例佔到69.4%,大學本科與研究生學歷比例僅佔30.6%,可見我國衛生人員整體受教育水平偏低,高質量衛生人員較缺乏。

■ 醫療資源配置不均衡:據統計,2015年每千人口醫療衛生機構床位數平均僅,城市為8.27個、農村僅為3.71個,資源配置不平衡。

AI+醫療可以通過大量診療案例和病理圖像的深度學習,實現AI智能診療,從供給端提供大量較高水平的AI醫生,緩解醫患矛盾,地域分布等痛點。若假設未來AI技術在醫療行業中的滲透率能達到10%,那麼根據2025年的醫療行業空間推測,AI+醫療市場空間將達到千億元,十分巨大。

6.2 當前發展面臨巨大挑戰,等待曙光到來 

儘管理論的空間和但是當前的AI+醫療面臨巨大挑戰,行業內公司獲取訂單和有效營收困難,主要是有以下幾個原因:

■ AI+醫療的技術水平有待提升,以IBM的WATSON為例,雖然研發投入上百億美元,但在美國的應用依然困難重重,內部也爆出過開錯藥的問題。 

■ 醫療行業事關人民群眾生命健康,試錯成本很高,造成主流醫療機構對AI技術的實際使用非常謹慎,目前尚處於試驗和探索的階段。

■ 醫療行業的政策限制較多,AI技術進入實用也面臨著眾多監管政策的挑戰。

■ 國內醫療行業的信息化程度相比發到國家較低,不同醫院之間甚至醫院內部的信息孤島都很嚴重,AI技術實施的載體不完善。

總體而言,雖然AI+醫療未來的理論空間十分巨大,但當前還處於發展初期,面臨很多困難,銀行的介入還需要等待行業曙光出現。

7.布局建議及風險提示

7.1 布局建議 

(請查閱PDF版本報告,如需全文請聯繫招商銀行研究院研究管理團隊。)
(請查閱PDF版本報告,如需全文請聯繫招商銀行研究院研究管理團隊。)

7.2 風險提示

(1)行業監管風險:試錯成本是下遊子行業發展速度的重要因素,如果未來政府層面出於安全等考慮對行業加強監管,有可能導致相應行業的試錯成本增加,發展速度變慢。
(2)技術創新風險:如果未來出現新的不基於深度學習的技術方法,能夠取得更好的智能效果,現有下遊企業的技術方案、技術積累可能需要推倒重來,存在技術變遷的風險。
(3)中美貿易戰風險:當前人工智慧雲端用的主要晶片來源還是美國進口,如果貿易戰進一步加劇,可能造成晶片價格上升、性能下降,對下遊企業的經營造成壓力。
(4)子行業自身發展風險:這個需要針對行業具體分析,如智能安防領域需關注華為和阿里的競爭風險;智慧教育領域需關注留存率風險。

相關焦點

  • 2020年中國面向人工智慧「新基建」的知識圖譜行業白皮書
    全文共計1379字,預計閱讀時間8分鐘日前,認知智能國家重點實驗室&艾瑞諮詢聯合發布《2020年面向人工智慧「新基建」的知識圖譜行業白皮書》。白皮書從善政、惠民、興業、智融四個部分對知識圖譜技術在其他行業中的代表性應用場景進行梳理,對知識圖譜未來的發展和應用做出展望,同時對人工智慧「新基建」下,城市數位化、智慧化發展的創新場景進行展示。
  • 東方財富網
    東方財富網 金融理財 大小: 377.9 MB
  • 人工智慧行業研究報告
    人工智慧的應用達不到人們的預期,政府縮減投入。當前,人工智慧正處於第三次熱潮。這次熱潮除了結合技術以及算法的提高之外,最大特點是通過深度學習和大數據的結合,使得人工智慧在多個領域找到了真實的應用場景,與具體業務場景相結合,開始在一些行業中發揮著巨大的作用。2.
  • 南方人工智慧混合(005729)詳細資料
    在資產配置中,通過定量與定性相結合的方法分析對宏觀經濟中結構性、政策性、周期性以及突發性事件進行研判,挖掘未來經濟的發展趨勢及背後的驅動因素,預測可能對資本市場產生的重大影響,確定投資組合的投資範圍和比例。在股票投資中,採用「自上而下」的行業配置策略和「自下而上」的個股選擇策略,精選出具有持續競爭優勢,且估值有吸引力的股票,精心科學構建股票投資組合,並輔以嚴格的投資組合風險控制,以獲取超額收益。
  • 智能空天創新大賽在滬舉辦 挖掘人工智慧等新技術在空天領域潛力
    智能空天創新大賽在滬舉辦 挖掘人工智慧等新技術在空天領域潛力 2020-12-21 20:52:43上海機電工程研究所供圖   智能空天創新大賽在滬舉辦 挖掘人工智慧等新技術在空天領域的潛力  中新網上海12月21日電(鄭瑩瑩)在嫦娥五號剛剛完成的「月球挖『土』之旅」中,各種器件的分離、對接,讓「太空科技」深入人心,也帶旺航天賽事的人氣。
  • 【招聘】中信銀行信用卡中心招數據挖掘、產品經理、人工智慧等崗位
    數據挖掘崗工作地點:福田區職位描述:1、負責大數據挖掘算法及人工智慧技術的基礎研究和技術組件的開發工作,以及數據挖掘工具和算法的研究引入。2、結合卡中心的業務場景開展組合營銷、動態規劃等領域數據挖掘項目的方案制定、項目實施落地及優化,負責卡中心各業務場景的人工智慧技術可行性驗證和落地部署。
  • 民生加銀基金柳世慶:市場結構性機會仍存 挖掘兩方向優質個股
    擁有接近10年研究員經驗、4年多公募投資經驗的柳世慶,從宏觀研究出發,覆蓋過多個行業,不斷積累形成自身兼具價值與成長的均衡投資理念,更打磨出從中觀行業景氣度出發,把握挖掘優質企業的投資方法。在投資中,柳世慶更聚焦於企業長期發展的基本面,追求確定性與合理的估值水平。
  • 深入解讀人工智慧在旅遊行業的應用
    2015年以來,隨著玩美自由行這類智能行程規劃助手的出現,在曾經技術基礎薄弱的旅遊行業如今所謂的「智能行程定製」層出不窮,幾乎都人人都在說人工智慧和大數據。   眼花繚亂的背後,到底什麼是人工智慧?什麼是大數據?
  • 軍工板塊整體回調 泰豪科技等優質軍工標的迎投資機會
    與此同時,隨著「十四五」規劃的預期升溫,軍工行業作為業績確定性行業有望進一步受益。對此,銀河證券指出:中長期看,「十四五」期間國防政策由過去的「強軍目標穩步推進」轉變為「備戰能力建設」,直接導致武器裝備放量增長,軍工企業的營收端、利潤端都將得到大幅增長,景氣度持續提升。
  • 東方財富網電腦版
    東方財富網電腦版 金融理財 大小: 65.9M
  • 華泰證券:人工智慧萬億市場待挖掘 10股最受益
    網易財經2月4日訊 繼移動網際網路之後,人工智慧的浪潮已經開始掀起,華泰證券行業研究認為,新一輪技術革命風暴已經誕生,人工智慧有望成為未來10年乃至更長時間內IT產業發展的焦點。
  • 創新奇智完成中金甲子領投的C輪融資,躋身人工智慧獨角獸
    近日,創新奇智完成C輪融資,正式躋身人工智慧獨角獸企業陣營。本輪融資由中金甲子領投,國和投資、陽光融匯資本等機構跟投,老股東華興新經濟基金繼續加碼。華興資本和中金公司擔任本輪聯合財務顧問。創新奇智完成C輪融資  作為創新工場AI子公司,創新奇智是順應AI產業化浪潮成長起來的新一代人工智慧獨角獸企業。
  • 創新奇智完成中金甲子領投的C輪融資 躋身人工智慧獨角獸陣營
    作為創新工場AI子公司,創新奇智是順應AI產業化浪潮成長起來的新一代人工智慧獨角獸企業。公司以「人工智慧賦能商業價值」為使命,致力於用先進的AI技術為企業提供人工智慧產品及解決方案,助力傳統產業降本增效,提升商業價值,實現智能化轉型。
  • 外資流入對中國醫藥股的影響_新財富網
    發布時間:2019年7月29日摘要:復盤外資對醫藥股的挖掘,不論是境外成熟市場上對優質中概醫藥股、中資醫藥股的挖掘,亦或是陸股通開通後外資對恆瑞、愛爾等的持續流入,均體現了外資對中國醫藥行業「核心資產」的推崇。
  • 2020人工智慧語義識別創新排行榜發布 虎博科技憑新一代智能搜索...
    2020人工智慧語義識別創新排行榜發布 虎博科技憑新一代智能搜尋引擎入選 2020人工智慧語義識別創新排行榜發布 虎博科技憑新一代智能搜尋引擎入選 2020-08-05 14:25:52  來源:網際網路
  • 人工智慧等新興行業人才走俏
    人工智慧等新興行業人才走俏 青島全搜索電子報   2020.12.07 星期一     早報12月6日訊 日前,青島市人力資源和社會保障局發布《疫情影響下我市人力資源市場新變化的研究探索》,報告中首次公布了全市人力資源市場三季度「大數據」。
  • 聚焦人工智慧/新零售/大健康,上海交大安泰MBA第二期行業社群班...
    12月6日,上海交通大學安泰經濟與管理學院第二期行業社群班於交大徐匯校區正式開班。第二期行業社群班繼續秉承交大安泰「縱橫交錯,知行合一」戰略,聚焦人工智慧、新零售和大健康三大行業領域,面向交大安泰各項目在校生與校友公開招生,獲得近千名在校生及校友踴躍報名。
  • _新財富網
    2019年的通信行業,5G自然是作為重頭戲會連番上演,但非5G板塊,包括IDC及雲計算、衛星導航及通信、網絡安全、智能控制與物聯網依然值得持續關注,主要標的包括:光環新網、深信服、星網銳捷、寶信軟體、數據港,海格通信、華力創通、振芯科技,中新賽克、恆為科技、迪普科技,和而泰等。
  • 打造江蘇人工智慧產業新優勢
    2018年10月31日,習近平總書記在主持中共中央政治局集體學習時強調,人工智慧是新一輪科技革命和產業變革的重要驅動力量,加快發展新一代人工智慧是事關我國能否抓住新一輪科技革命和產業變革機遇的戰略問題。立足江蘇製造業的深厚基礎,搶抓人工智慧發展的歷史機遇,促進人工智慧與實體經濟深度融合,成為我省構建自主可控先進位造業體系的重大任務。
  • 現代信息技術在醫療行業的應用及展望
    現代信息技術經過高速發展,延伸出大數據、人工智慧和移動網際網路等新興技術領域,這些新技術正在改變各行業的生產方式,成為新的生產要素、核心技術和競爭力的來源。醫療行業作為關乎國計民生的傳統產業,隨著現代信息技術的滲透和普及,各產業主體(醫院、藥企、藥品器械分銷商、和患者)都將迎來新一輪的變革。