設計三極體放大電路時應該注意哪些技巧?(通俗易懂)

2020-11-24 電子工程專輯

放大電路的核心元件是三極體,所以要對三極體要有一定的了解。用三極體構成的放大電路的種類較多,我們用常用的幾種來解說一下(如圖1)。圖1是一共射的基本放大電路,一般我們對放大路要掌握些什麼內容?

(1)分析電路中各元件的作用;

(2)解放大電路的放大原理;

(3)能分析計算電路的靜態工作點;

(4)理解靜態工作點的設置目的和方法;

以上四項中,最後一項較為重要。

  


圖1中,C1,C2為耦合電容,耦合就是起信號的傳遞作用,電容器能將信號信號從前級耦合到後級,是因為電容兩端的電壓不能突變,在輸入端輸入交流信號後,因兩端的電壓不能突變因,輸出端的電壓會跟隨輸入端輸入的交流信號一起變化,從而將信號從輸入端耦合到輸出端。但有一點要說明的是,電容兩端的電壓不能突變,但不是不能變。


R1、R2為三極體V1的直流偏置電阻,什麼叫直流偏置?簡單來說,做工要吃飯。要求三極體工作,必先要提供一定的工作條件,電子元件一定是要求有電能供應的了,否則就不叫電路了。


在電路的工作要求中,第一條件是要求要穩定,所以,電源一定要是直流電源,所以叫直流偏置。為什麼是通過電阻來供電?電阻就象是供水系統中的水龍頭,用調節電流大小的。所以,三極體的三種工作 狀態「:載止、飽和、放大」就由直流偏置決定,在圖1中,也就是由R1、R2來決定了。


首先,我們要知道如何判別三極體的三種工作狀態,簡單來說,判別工作於何種工作狀態可以根據Uce的大小來判別,Uce接近於電源電壓VCC,則三極體就工作於載止狀態,載止狀態就是說三極體基本上不工作,Ic電流較小(大約為零),所以R2由於沒有電流流過,電壓接近0V,所以Uce就接近於電源電壓VCC。


若Uce接近於0V,則三極體工作於飽和狀態,何謂飽和狀態?就是說,Ic電流達到了最大值,就算Ib增大,它也不能再增大了。


以上兩種狀態我們一般稱為開關狀態,除這兩種外,第三種狀態就是放大狀態,一般測Uce接近於電源電壓的一半。若測Uce偏向VCC,則三極體趨向於載止狀態,若測Uce偏向0V,則三極體趨向於飽和狀態。

放大電路,就是將輸入信號放大後輸出,(一般有電壓放大,電流放大和功率放大幾種,這個不在這討論內)。先說我們要放大的信號,以正弦交流信號為例說。在分析過程中,可以只考慮到信號大小變化是有正有負,其它不說。上面提到在圖1放大電路電路中,靜態工作點的設置為Uce接近於電源電壓的一半,為什麼?


這是為了使信號正負能有對稱的變化空間,在沒有信號輸入的時候,即信號輸入為0,假設Uce為電源電壓的一半,我們當它為一水平線,作為一個參考點。當輸入信號增大時,則Ib增大,Ic電流增大,則電阻R2的電壓U2=Ic×R2會隨之增大,Uce=VCC-U2,會變小。U2最大理論上能達到等於VCC,則Uce最小會達到0V,這是說,在輸入信增加時,Uce最大變化是從1/2的VCC變化到0V。


同理,當輸入信號減小時,則Ib減小,Ic電流減小,則電阻R2的電壓U2=Ic×R2會隨之減小,Uce=VCC-U2,會變大。在輸入信減小時,Uce最大變化是從1/2的VCC變化到VCC。這樣,在輸入信號一定範圍內發生正負變化時,Uce以1/2VCC為準的話就有一個對稱的正負變化範圍,所以一般圖1靜態工作點的設置為Uce接近於電源電壓的一半。


要把Uce設計成接近於電源電壓的一半,這是我們的目的,但如何才能把Uce設計成接近於電源電壓的一半?這就是手段了。


這裡要先知道幾個東西,第一個是我們常說的Ic、Ib,它們是三極體的集電極電流和基極電流,它們有一個關係是Ic=β×Ib,但我們初學的時候,老師很明顯的沒有告訴我們,Ic、Ib是多大才合適?這個問題比較難答,因為牽涉的東西比較的多,但一般來說,對於小功率管,一般設Ic在零點幾毫安到幾毫安,中功率管則在幾毫安到幾十毫安,大功率管則在幾十毫安到幾安。


在圖 1 中,設 Ic 為 2mA,則電阻 R2 的阻值就可以由 R=U/I 來計算,VCC 為 12V,則 1/2VCC為 6V,R2 的阻值為 6V/2mA,為 3KΩ。Ic 設定為 2 毫安,則 Ib 可由 Ib=Ic/β推出,關健是β的取值了,β一般理論取值 100 ,則 Ib=2mA/100=20#A ,則 R1= ( VCC-0.7V )/Ib=11.3V/20#A=56.5KΩ, 但實際上,小功率管的β值遠不止 100,在 150 到 400 之間,或者更高,所以若按上面計算來做,電路是有可能處於飽和狀態的,所以有時我們不明白,計算沒錯,但實際不能用,這是因為還少了一點實際的指導,指出理論與實際的差別。這種電路受β值的影響大,每個人計算一樣時,但做出來的結果不一定相同。也就是說,這種電路的穩定性差,實際應用較少。但如果改為圖 2 的分壓式偏置電路,電路的分析計算和實際電路測量較為接近。



在圖 2 的分壓式偏置電路中,同樣的我們假設 Ic 為 2mA, Uce 設計成 1/2VCC 為 6V。則 R1、R2、 R3、 R4 該如何取值呢。計算公式如下:因為 Uce 設計成 1/2VCC 為 6V,則 Ic×(R3+R4)=6V;Ic≈Ie。可以算出 R3+R4=3KΩ,這樣,R3、R4 各是多少?一般 R4 取 100Ω,R3 為 2.9KΩ,實際上 R3 我們一般直取 2.7KΩ,因為 E24 系列電阻中沒有 2.9KΩ,取值 2.7KΩ與 2.9KΩ沒什麼大的區別。因為 R2 兩端的電壓等於 Ube+UR4。


0.7V+100Ω×2mA=0.9V,我們設 Ic 為 2mA,β一般理論取值 100,則 Ib=2mA/100=20#A,這裡有一個電流要估算的,就是流過 R1 的電流了,一般取值為 Ib 的 10 倍左右,取 IR1200#A。則 R1=11.1V/200#A≈56KΩR2=0.9V (/200-20) #A=5KΩ;考慮到實際上的β值可能遠大於 100,所以 R2 的實際取值為 4.7KΩ。這樣,R1、R2、R3、R4 的取值分別為 56KΩ,4.7KΩ,2.7KΩ,100Ω,Uce 為 6.4V。


在上面的分析計算中,多次提出假設什麼的,這在實際應用中是必要的,很多時候需要一個參考值來給我們計算,但往往卻沒有,這裡面一是我們對各種器件不熟悉,二是忘記了一件事,我們自己才是用電路的人,一些數據可以自己設定,這樣可以少走彎路。


推薦閱讀:


▼ 點擊閱讀原文,查找10萬+下載資料

相關焦點

  • 三極體的應用——放大電路設計
    引言很多人看完模電書上的三極體放大電路原理後,了解到三極體是怎麼「放大」電流的,但是讓他自己設計一款合適的放大電路,基本上是沒有思路,不知道從哪裡下手。今天,我就帶領大家來學習一下如何用三極體設計放大電路,本文以共設放大電路為例進行講解。
  • 三極體各參數如何選取問題(共射極放大電路)
    推薦一本不錯的書籍,《電子設計從零開始》(楊欣)。通讀此書,通俗易懂,還結合multisim進行仿真驗證。對本科階段的模電書籍是一種顛覆。本文引用地址:http://www.eepw.com.cn/article/201612/341248.htm  以下截取自裡面部分章節,如何計算共射極放大電路的各個參數。很實用。
  • 三極體放大電路的應用
    所謂的三極體放大作用就是指,在三極體輸入端輸入一個幅度較小的信號(這個信號可以是電壓或電流),三極體可以按照輸入信號的變化規律將其轉為幅度較大的信號。三極體的放大作用用途很廣,譬如可以將話筒輸出的微弱音頻信號放大後驅動喇叭工作,可以將紅外遙控信號放大後驅動風扇電機工作。      基本的單管放大器。   上圖是一個三極體構成的單管放大電路,Rb是三極體的基極偏置電阻,其作用是給三極體提供一個合適的直流偏壓,使三極體能夠正常放大信號。
  • 三極體放大電路設計步驟詳解
    輸出功率可以用於計算發射極電流;在選擇電晶體時需要注意頻率特性。在第一個圖中我們觀察到最大輸出電壓幅值為5V,三極體輸出電壓幅度由Vc極電壓決定,而Vc端的電壓要設置為電源電壓的1/2左右。U2最大理論上能達到等於VCC,則Uce最小會達到0V,這是說,在輸入信增加時,Uce最大變化是從1/2的VCC變化到0V。 同理,當輸入信號減小時,則Ib減小,Ic電流減小,則電阻R2的電壓U2=Ic×R2會隨之減小,Uce=VCC-U2,會變大。在輸入信減小時,Uce最大變化是從1/2的VCC變化到VCC。
  • 基於Multisim的三極體放大電路仿真分析
    0 引言本文引用地址:http://www.eepw.com.cn/article/175239.htm放大電路是構成各種功能模擬電路的基本電路,能實現對模擬信號最基本的處理--放大,因此掌握基本的放大電路的分析對電子電路的學習起著至關重要的作用。三極體放大電路是含有半導體器件三極體的放大電路,是構成各種實用放大電路的基礎電路,是《模擬電子技術》課程中的重點內容。
  • PNP三極體和NPN三極體開關電路
    晶體三極體,是半導體基本元器件之一,具有電流放大作用,是電子電路的核心元件。三極體是在一塊半導體基片上製作兩個相距很近的PN結,兩個PN結把整塊半導體分成三部分,中間部分是基區,兩側部分是發射區和集電區,排列方式有PNP和NPN兩種。PNP與NPN兩種三極體各引腳的表示:
  • 三個最簡單的三極體放大電路
    BC547三極體極性:字面朝上,左→右 C、B、E由於一隻電晶體的放大倍數有限,想讓LED發光更明亮,或許你需要用點力兩隻手分別捏住兩個點。你的身體相當於一個電阻,電流流過你的身體(手指)給三極體基極提供一個偏置電流。電晶體將流過你手指的電流放大約200倍,這足以點亮LED。
  • 三極體的應用——開關電路設計
    引言開關電路在單片機電路設計中經常用到,一般有兩個作用,一是電平的轉換,二是增加單片機IO口的驅動能力。雖然這個電路很簡單,也很常用,但是我發現還是有些人電路結構錯誤或者參數不會設置。圖1 三極體開關電路基本結構有些人設計的開關電路就沒有基極電阻,有可能不是他不知道這種電路結構,而是他不會調參數
  • 晶體三極體之共基極放大電路
    共基極放大電路圖NPN與PNP三極體的結構與表示共基極放大電路:信號從發射極輸入,從集電極輸出,基極為公共端,交流接地。共基極放大電路的特性:1.輸入阻抗。輸入阻抗等於發射極電阻。輸入阻抗小,故高頻特性好。2.輸出阻抗。輸出阻抗等於負載電阻與集電極電阻的並聯值。3.交流放大倍數大。一般為100倍左右。
  • 三極體在電路中的應用特性
    三極體也稱為半導體三極體(或稱晶體三極體),常見的三極體有NPN型和PNP型兩大類,三極體是放大電路的核心元器件,三極體最主要的功能是對電流有放大的作用。1、三極體的功能三極體的應用如下圖所示。這是一個穩壓電路,電路中的三極體VT1(調整管)起電流放大作用,三極體VT2(誤差放大器)起穩壓作用。Rc2是VT2的集電極負載電阻。誤差取樣電路輸出電壓的變化量經VT2先放大,然後再送到VT1的基極,為VT1提供基極電流,VT1放大後輸出。這樣只要輸出電壓有一點微小的變化,就能通過VT1的管壓降產生比較大的變化,這樣在輸岀電壓變化時使VT1的內阻發生變化,使輸岀電壓保持穩定。
  • 如何用公式去求三極體放大電路的放大倍數
    打開APP 如何用公式去求三極體放大電路的放大倍數 發表於 2019-07-09 17:28:26 三極體的三種組態放大電路放大倍數的計算方法,三種基本組態,分別是共射放大電路,共基放大電路和共集放大電路。
  • 工程師必須學會的三極體電路分析方法
    三極體有靜態和動態兩種工作狀態。未加信號時三極體的直流工作狀態稱為靜態,此時各極電流稱為靜態電流,給三極體加入交流信號之後的工作電流稱為動態工作電流,這時三極體是交流工作狀態,即動態。0NZednc一個完整的三極體電路分析有四步:直流電路分析、交流電路分析、元器件和修理識圖。
  • 兩种放大器電路故障分析方法
    3、當電路中的電容出現開路故障時,對放大器直流電路無影響,電路中的直流電壓不發生變化;當電路中的電容出現漏電或短路故障時,影響了放大器直流電路的正常工作,電路中的直流電壓發生變化。4、當C1漏電時VT1集電極直流電壓下降,當C1擊穿時VT1集電極直流電壓為零;當C2或C3漏電時,電路中的直流工作電壓發生改變;當C4漏電時,VT1發射極電壓下降。
  • 大功率三極體有哪些 中功率三極體型號有哪些
    三極體 三極體,全稱應為半導體三極體,也稱雙極型電晶體、晶體三極體,是一種控制電流的半導體器件其作用是把微弱信號放大成幅度值較大的電信號, 也用作無觸點開關。晶體三極體,是半導體基本元器件之一,具有電流放大作用,是電子電路的核心元件。
  • 晶體三極體之共發集電極放大電路
    線性穩壓電源共集電極放大電路在線性穩壓電路中的應共集電極放大電路:信號從晶體三極體的基極輸入,從發射極輸出,集電極為公共端的電路,由於發射極輸出與基極輸入信號相同,故又稱作射極跟隨器。共集電極放大電路的特性:1.信號無放大。輸出信號幅度與輸入信號幅度的比值為:1:1。2.輸出信號與輸入信號同相。3.輸入阻抗。為分壓電阻的並聯值與基極和發射極體電阻乘以1加直流增益倍後的和。
  • 晶體三極體放大電路的非線形失真及其解決辦法
    晶體三極體在現代電路中有著廣泛的應用,其主要功能是放大功能和開關功能,本文主要針對三極體的放大功能進行分析,重點介紹了電晶體在放大電路中出現的非線形失真的原因進行了深入的分析,最後給出了非線形失真的原因極其解決辦法。
  • 淺談負反饋與串聯型三極體穩壓電路
    1.1 如上圖所示,R5兩端電壓應該是多少?該電路是如何進行穩壓的?1.2 為什麼這裡要講這個串聯型三極體穩壓電路?因為要通過此電路來引導出三極體基本放大電路中的負反饋電路的原理,串聯型三極體穩壓電路的穩壓原理與三極體基本放大電路中的負反饋電路抑制共模幹擾的原理十分相似。2.
  • 三極體開關電路,三極體驅動電阻應當如何選擇?
    三極體有截止、線性放大、飽和3種工作狀態,作為開關作用,三極體工作在截止和飽和狀態,對應於開關的斷開跟閉合。1)截止狀態:當三極體基極偏置電壓小於PN結的導通電壓,基極電流Ib=0時,集電極Ic和發射極Ie沒電流(或只有微弱的弱電電流)通過,此時三極體失去了電流放大作用,我們稱三極體工作在截止狀態,CE極之間相當於開關的斷開狀態。
  • PNP 和NPN型三極體,放大電路工作原理,類似水龍頭?
    一、了解三極體三極體:是三個引腳的放大器件的統稱;全稱為半導體三極體,也稱雙極型電晶體、晶體三極體等;是電子電路的核心元件,具有電流放大作用,可通過放大微弱電信號;因此常被用作無觸點開關。原理通水龍頭,以小栓紐控制大水流一樣;四、三極體的主要用途:1.用於模擬電路中,作電壓或電流放大。2.用於高頻電路中,作調製、解調或自激振蕩。
  • 簡易音頻放大器電路圖大全(九款簡易音頻放大器電路設計原理圖詳解)
    為了避免過分的損耗,C1的容值應儘可能低,本電路取15F。最後需要注意的是,電路正常工作時LM317晶片的最小工作電流要求為4mA,使用了一個負載電阻來吸收4mA電流。如果使用一低阻抗揚聲器,也必須引入此負載電阻,可以對信號失真進行補償。在實際電路中,如果使用8Q阻抗揚聲器,需使用至少420Q負載電阻補償可能引起的信號失真。