光電產品都需要光的穿透與電的傳導,因此透明導電膜是光電產品的基礎,平面顯示器、觸控面板、太陽能電池、電子紙、OLED照明等光電產品都須要用到透明導電膜。
市調機構Research and Markets 2017年發布的市場調查指出,預估全球透明導電膜的市場從2017到2026年平均年成長率超過9%,不管是從光電產品的產業鏈或是市場規模來評量, 透明導電膜都是光電產業不可忽視的重要材料。
透明度與導電度在物理上是兩個互相掣肘的特性,透明度代表可見光可以穿透介質的多寡,而導電度代表介質傳導載子(Carrier,包括電子與電洞)的多寡,與載子濃度有關。
在光學性質上,載子可視為處於一種電漿狀態,與光的交互作用很強,當入射光的頻率小於材料載子之電漿頻率(Plasma Frequency)時,入射光會被反射,因此,材料的載子電漿頻率在光譜的位置是可見光波段(380nm~ 760nm)是否能夠穿透的決定因素。
一般金屬薄膜的電漿頻率在紫外光區,所以可見光無法穿透金屬,這是金屬在可見光區呈現不透明光學性質的原因,而金屬氧化物的電漿頻率落在紅外光區,因此可見光區的光線可以透過金屬氧化物,呈現透明狀態。
但是,金屬氧化物能隙(Energy Band Gap)太大,載子的濃度有限,導致金屬氧化物的導電度很差。 從材料的物理特性來看,透明度與導電度是難以兩全的特性,開發一個同時具有高導電度與高光穿透率的材料相對困難。
降低金屬材料厚度是增加光線穿透度的一個方法,惟金屬薄膜厚度太薄,加工不易,例如以蒸鍍方式成膜會形成島狀不連續的生長;另一方面也因為膜厚較薄,在空氣中容易有氧化的現象產生,造成電阻值劇變,薄膜穩定性差,不利於後續加工應用。
提升金屬氧化物的載子濃度以增加其導電度是透明導電膜的另一個方向。 氧化物材料穩定,薄膜成膜性佳。 可以利用摻雜(Doping)或是製造缺陷增加載子的濃度來提高導電度,是透明導電膜的理想材料。
如摻雜的氧化錫、氧化鋅等都具有高透明、高導電的特性,其中又以氧化銦錫(Indium Tin Oxide, ITO)應用最為廣泛。 ITO導電度佳,可見光透光率高,同時成膜技術與後續蝕刻圖案化製程都成熟可靠,是目前透明導電膜主要的材料。
ITO透明導電膜雖然應用非常廣泛,但ITO屬於脆性的陶瓷材料,容易受力脆裂。
從柔性電子對可撓性的功能需求來看,受力彎曲碎裂的特性使ITO在柔性電子組件應用上碰到瓶頸,具有可撓特性,取代ITO透明導電膜的產品必是未來柔性光電產品的基礎材料,是柔性光電產品的戰略物資。