阻抗匹配電路的作用,阻抗匹配的理想模型

2021-01-08 電子發燒友
阻抗匹配電路的作用,阻抗匹配的理想模型

李倩 發表於 2018-08-29 10:27:29

一、 阻抗匹配電路的作用

阻抗控制在硬體設計中是一個比較重要的環節,IC廠商針對其應用一般會向終端產商提供PCB板材質、PCB疊層、PCB板厚等一些相關參考設計建議(這些都是跟PCB阻抗控制設計息息相關的),終端廠商在拿到這些資料後,會結合實際情況據此進行本地化的設計調整,然後將相關設計資料及要求提供給PCB的生產廠家進行PCB生產。

針對不同信號系統有不同的特徵阻抗值,比如75ohm、100ohm、90ohm、50ohm等,而對頻率較高的RF信號來講,最常見的是50ohm的阻抗控制。

在實際的PCB設計中,RF傳輸線通常都會採用微帶線和帶狀線的走線方式, 且需要選取參考層來進行阻抗控制。考慮到晶片的RF特性、實際PCB生產工藝、及元器件用料的因素,除了需進行PCB RF傳輸線的阻抗控制外,在硬體設計上通常還需添加一些匹配網絡電路用作RF的調試,一般說來,其作用大概為以下幾種:

1、諧振頻率以及帶寬的調整

2、功率、EVM、ACLR、PA電流、傳導雜散和輻射雜散等指標的調試等

圖1 某IC廠商建議的4-layer層疊方式

二、 阻抗匹配的理想模型

射頻工程師大都遇到過匹配阻抗的問題,通俗的講,阻抗匹配的目的是確保能實現信號或能量從「信號源」到「負載」的有效傳送,其最最理想模型當然是希望Source端的輸出阻抗為50歐姆,傳輸線的阻抗為50歐姆,Load端的輸入阻抗也是50歐姆,一路50歐姆下去,這是最理想的。

圖2 理想阻抗傳輸

然而實際情況是:源端阻抗不會是50ohm,負載端阻抗也不會是50ohm,這個時候就需要若干個阻抗匹配電路,而匹配電路就是由電感和電容所構成,這個時候我們就需要使用電容和電感來進行阻抗匹配電路調試,以達到RF性能最優。

三、 電感電容的高頻特性

要用電感電容解決高頻的性能問題,那我們就需要先了解下電容和電感這些器件在高頻的特性。

翻一翻以前的物理課本,對電容器,是用平板表面積與平板間距的比值來定義其容量:

(A代表平板表面積,d代表平板間距,理想情況下在平板間沒有電流流動)

但在高頻信號通過時,電容器平板間的實際電介質存在損耗(也就是板間有傳導電流流動),所以,電容器的阻抗需要表示成電導和電納的並聯組合:

圖3 高頻電容等效電路

而對電感而言,在射頻電路中經常使用的電感為線圈結構,其線圈是用導線在圓柱體上繞制而成,線圈除了具有與頻率無關的電阻之外,它還存在一個「電感」,而臨近的繞圈間存在著分離的移動電荷,所以它還存在一個寄生旁路「電容」。

圖4 高頻電感等效電路

在高頻時,電容器中的電介質產生了損耗,所以電容器在諧振點前,呈現的阻抗特性與頻率成反比;而對電感器而言,當頻率接近諧振點時,高頻電感的阻抗迅速提高,當頻率繼續提高時,寄生電容C的影響成為主要的,線圈阻抗逐漸降低。

所以,一個實際電感或者電容並不能簡單用電感量或電容量來衡量,而應該將其當成寄生旁路電容C、串聯電阻R、寄生電感L的綜合效應,這個時候通過一個等效網絡去模擬要更為合理,當然,具體使用時,有時還需考慮集總參數和分布參數電路模型。

圖5 高頻電容阻抗頻率曲線

圖6 高頻電感阻抗頻率曲線

四、 Smith圓圖在RF匹配電路調試中的應用

說完電感、電容的高頻特性,接著我們來看看Smith圓圖。

Smith圓圖上可以反映出如下信息: 阻抗參數Z,導納參數Y,品質因子Q,反射係數,駐波係數,噪聲係數,增益,穩定因子,功率,效率,頻率信息等抗等參數。

圖5 Simth圓圖

是不是一臉懵,我們還是來看阻抗圓圖吧:

圖6 阻抗圓圖

阻抗圓圖的構圖原理是利用輸入阻抗與電壓反射係數之間的一一對應關係,將歸一化輸入阻抗表示在反射係數極坐標系中,其特點歸納如下:

1.上半圓阻抗為感抗,下半圓阻抗為容抗;

2.實軸為純電阻,單位圓為純電抗;

3.實軸的右半軸皆為電壓波腹點(除開路點),左半軸皆為電壓波節點(除短路點);

4.匹配點(1,0),開路點(∞,∞)和短路點(0,0);

5.兩個特殊圓:最大的為純電抗圓,與虛軸相切的為匹配圓;

6.兩個旋轉方向:逆時針轉為向負載移動,順時針轉為向波源移動。

導納圓圖與阻抗圓圖互為中心對稱,同一張圓圖,即可以當作阻抗圓圖來用,也可以當作導納圓圖來用,但是在進行每一次操作時,若作為阻抗圓圖用則不能作為導納圓圖。

Smith圓圖中,能表示出一些很有意思的特徵:

在負載之前串聯或並聯一個可變電感/電容,電路圖如圖7左側4個圖所示,將得到Smith圓圖上右側的幾條曲線。對應Smith阻抗圓及導納圓,其運動軌跡如下:

1、使用Smith阻抗圓時,串聯電感順時針轉,串聯電容逆時針轉;

2、使用Smith導納圓時,並聯電感,逆時針轉,並聯電容順時針轉。

圖7 聯接集中元件,Smith軌跡變化規律

五、 匹配電路調試的注意事項

以上串並聯元件對應的smith圖上的運動軌跡可作為調試的參考及對結果的初步判斷,而至於RF匹配電路實際調試過程中的注意事項,一般而言有五項:

1 .電感/電容值不要過小,原因是要維持匹配的穩定性,因為電感/電容值會有誤差,以電容為例子,大概有±0.1pF的誤差,如果是一個容值為 0.3pF的電容,則誤差高達33%,其容值範圍為0.2pF~0.4pF,這可能會導致每片PCB的Tx/Rx Performance不一致,進而影響工廠量產時的良率。

2. 落地電容值不要過大,是因為依照容抗公式:   

電容值越大,容抗越小,因此落地電容值過大,則可能會讓信號都流到地端。

3.電感/電容值不要過於冷門,原因是方便備料。若是常見的值,則所有廠家都會有,量產過程中,避免出現廠家缺料的情況。

4.儘可能設計成Low Pass Filter,原因是這樣可以抑制諧波。常用的 Low Pass Filter的組合如下:

圖8 Low Pass Filter組合

5. 對一般消費電子產品而言,匹配電路整個頻帶的smith原圖軌跡需落在VSWR=2的圓內,且其整個頻帶的阻抗軌跡儘可能收斂,這是最重要的原則,上述步驟,是以單一頻率點來做匹配,但最後看整個頻率範圍內的Smith Chart軌跡,才能決定這一組匹配值可否採用。(如圖9和圖10)

圖9 Smith Chart軌跡

圖10 Smith Chart軌跡

六、 小結

對於靠近PA或者DUP等射頻前端器件的匹配網絡大家都會預留,但在一些物聯網產品設計中,由於產品尺寸較小又需要設計PCB板載天線,有些工程師為了節省空間而省掉了靠近天線端的匹配網絡,從而導致在RF性能的優化過程中或者認證要求的雜散測試中束手無策,造成產品開發周期加長或者硬體設計的改版,得不償失。

因此,在實際的電路設計中,還是建議預留匹配電路,不管是射頻前端還是後端的部分。

另外,還存在這樣的一種可能,在將靠近天線端的匹配網絡作為「天線」的一部分進行調試時,雖然駐波比得到了優化,但天線系統的效率反而會降低。所以,在整機環境較為惡劣的情況下,僅僅想依靠匹配網絡的調整去提升整機的無線性能會有一定的難度,而且會存在雜散超標的風險。

調整匹配電路雖然能降低反射,但同樣會引入損耗,為了優化性能多增加元器件,還有可能在生產製程上增加一些SMT issue的風險。

為解釋一句情詩,寫2900字注釋。為做一項測試,終日與儀器為伴。沒錯,這就是班妹style。

班妹的願望是大家在生產產品時,可以少走彎路少掉坑!產品研發階段,有關技術方面的內容,可隨時找我討論,如果我知道的話,一定會盡力解答。另外,有測試需求的話,也可隨時找我喲~

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • 深入淺出理解阻抗匹配!
    一件器材的輸出阻抗和所連接的負載阻抗之間所應滿足的某種關係,以免接上負載後對器材本身的工作狀態產生明顯的影響。對於低頻電路和高頻電路,阻抗匹配有很大的不同。 在理解阻抗匹配前,先要搞明白輸入阻抗和輸出阻抗。
  • 射頻電路阻抗匹配原理
    打開APP 射頻電路阻抗匹配原理 發表於 2017-11-13 09:00:18   射頻電路
  • 阻抗匹配的另一種思路
    本文引用地址:http://www.eepw.com.cn/article/201903/398167.htm  一、理想的匹配  通信系統的射頻前端一般都需要阻抗匹配來確保系統有效的接收和發射,在工業物聯網的無線通信系統中,國家對發射功率的大小有嚴格要求,如不高於+20dBm;若不能做到良好的匹配,就會影響系統的通信距離。
  • 基於Ansoft Designer的射頻功放電路阻抗匹配優化
    針對工作頻率為433MHz的射頻功率放大電路中的阻抗匹配問題,提出了基於EDA軟體——Ansoft designer的阻抗匹配優化設計方法。運用Ansoft designer對射頻功放電路進行了阻抗匹配優化設計,並對電路進行了仿真分析。
  • 為什麼要進行阻抗匹配?
    電子行業的工程師經常會遇到阻抗匹配問題。什麼是阻抗匹配,為什麼要進行阻抗匹配?本文帶您一探究竟!一、什麼是阻抗在電學中,常把對電路中電流所起的阻礙作用叫做阻抗。阻抗單位為歐姆,常用Z表示,是一個複數Z= R+i( ωL–1/(ωC))。
  • 談談阻抗匹配的理解
    阻抗匹配(impedance matching)信號源內阻與所接傳輸線的特性阻抗大小相等且相位相同,或傳輸線的特性阻抗與所接負載阻抗的大小相等且相位相同,分別稱為傳輸線的輸入端或輸出端處於阻抗匹配狀態,簡稱為阻抗匹配。否則,便稱為阻抗失配。
  • 大神教會你阻抗匹配原理及負載阻抗匹配
    ,為實現信號的無反射傳輸或最大功率傳輸,要求電路連接實現阻抗匹配。阻抗匹配關係著系統的整體性能,實現匹配可使系統性能達到最優。阻抗匹配的概念應用範圍廣泛,阻抗匹配常見於各級放大電路之間,放大電路與負載之間,信號與傳輸電路之間,微波電路與系統的設計中,無論是有源還是無源,都必須考慮匹配問題,根本原因是在低頻電路中是電壓與電流,而高頻中是導行電磁波不匹配就會發生嚴重的反射,損壞儀器和設備。本文介紹阻抗匹配電路的原理及其應用。
  • RFID系統中阻抗匹配
    討論阻抗匹配的問題最常用到的另外一個概念是戴維南定理,它是一個將複雜電路等效成為單一阻抗與理想電壓源相串聯的轉換,如圖1所示。通過戴維南定理的等效轉換,分析研究埠的阻抗匹配問題均可轉化為圖1(c)的模型來進行。電源端的阻抗ZS和負載端的阻抗ZL可以分別寫成如式(2)所示的形式:
  • 阻抗匹配及應用設計實戰
    由於實際的電壓源,總是有內阻的(請參看輸出阻抗一問),我們可以把一個實際電壓源,等效成一個理想的電壓源跟一個電阻r串聯的模型。假設負載電阻為R,電源電動勢為U,內阻為r,那麼我們可以計算出流過電阻R的電流為:I=U/(R+r),可以看出,負載電阻R越小,則輸出電流越大。負載R上的電壓為:Uo=IR=U/[1+(r/R)],可以看出,負載電阻R越大,則輸出電壓Uo越高。
  • 射頻電路中的共軛阻抗匹配介紹
    從前面的章節中的討論可以看出,電壓或功率反射對數字或射頻電路的性能非常有害。電壓和功率反射都是由於源或負載中存在不匹配的阻抗條件所造成的。阻抗匹配因此成為包括射頻、數字和模擬電路在內的所有電路設計中的一個關鍵課題。
  • 阻抗匹配這樣理解就簡單多了
    由於實際的電壓源,總是有內阻的,我們可以把一個實際電壓源,等效成一個理想的電壓源跟一個電阻r串聯的模型。  假設負載電阻為R,電源電動勢為U,內阻為r,那麼我們可以計算出流過電阻R的電流為:I=U/(R+r),可以看出,負載電阻R越小,則輸出電流越大。負載R上的電壓為:Uo=IR=U/[1+(r/R)],可以看出,負載電阻R越大,則輸出電壓Uo越高。
  • 阻抗匹配在電子技術中的應用分析
    2 阻抗匹配的幾種方式  在電子技術中,電壓(U/u)、電流(I/i)、電阻(R/r)或阻抗(Z/z)都是非常基本的電學概念,一個歐姆定律即將其貫穿起來,如式(1)所示:  其中,阻抗具有較電阻更一般的概念。基爾霍夫定律(KCL和KCL)則關係到一個子電路(一個閉合迴路或一個閉包)的電壓和電流應遵守的約束性關係。
  • 通信系統中射頻與天線阻抗匹配的調試方法
    一、理想的匹配 通信系統的射頻前端一般都需要阻抗匹配來確保系統有效的接收和發射,在工業物聯網的無線通信系統中,國家對發射功率的大小有嚴格要求,如不高於+20dBm;若不能做到良好的匹配,就會影響系統的通信距離。 射頻前端最理想的情況就是源端、傳輸線和負載端都是50Ω,如圖1。但是這樣的情況一般不存在。
  • PCB設計中阻抗匹配與0歐電阻的作用介紹
    打開APP PCB設計中阻抗匹配與0歐電阻的作用介紹 發表於 2019-07-30 15:42:44 1、阻抗匹配是指信號源或者傳輸線跟負載之間的一種合適的搭配方式
  • 從阻抗匹配解析射頻傳輸線技術
    阻抗匹配阻抗匹配是電路學裡的重要議題,也是射頻微波電路的重點。一般的傳輸線都是一端接電源,另一端接負載,此負載可能是天線或任何具有等效阻抗ZL的電路。傳輸線阻抗和負載阻抗達到匹配的定義,簡單說就是:Z0=ZL。在阻抗匹配的環境中,負載端是不會反射電波的,換句話說,電磁能量完全被負載吸收。
  • 淺析音響各種pop音及功放的阻抗匹配
    對於電源時序來說,由於多數主晶片的音頻輸出在上電和斷電過程中不太穩定,理想的上電次序是系統主晶片先於功放 上電。然後功放  的PVCC 再供電。斷電的理想時序正好相反,為功放 的電源先切斷,然後再切斷主控晶片的供電。 但是通常功放 的PVCC 取自於系統的主電源,該電源一般在開機後最先輸出。隨後再通過DC/DC 或LDO 降壓給主晶片供電。
  • 阻抗匹配與 RF 電壓
    設計人員通過使用孔徑和阻抗調諧器可以解決這些問題。然而,並不是任何孔徑或阻抗調諧器都可以使用。 當今的許多應用都需要使用更穩定、可靠的調諧產品,才能完全滿足設計需求。 01阻抗匹配與 RF 電壓 設計人員經常要克服的一個挑戰就是天線上的射頻能源。例如,與天線匹配的阻抗可能會在匹配網絡中生成較高的射頻電壓。
  • 原來變壓器可以用來調節阻抗匹配!
    根據接入方式阻抗匹配有串行和並行兩種方式; 根據信號源頻率阻抗匹配可分為低頻和高頻兩種。 在嵌入式系統中,一般頻率大於20M的信號且PCB走線長度大於5cm時都要加串行匹配電阻,例如系統中的時鐘信號、數據和地址總線信號等。串行匹配電阻的作用有兩個: A.減少高頻噪聲以及邊沿過衝。如果一個信號的邊沿非常陡峭,則含有大量的高頻成分,將會輻射幹擾,另外,也容易產生過衝。
  • 理想電容器阻抗與實際等效電路
    原因是,一個實際的電容器的行為並不是想理想電容器那樣。實際電路中,一個封裝0603的電容器的阻抗與頻率的變化曲線如下:一個0603電容雖然初看類似一個理想電容器,但與理想電容器不同的是,實際電容器的阻抗會先達到一個最低值,然後阻抗值開始增加。一個實際電容器在很高頻時可以用一個簡單的RLC電路模型加以近似。
  • PCB板設計阻抗匹配、零歐姆電阻的作用你是否完全掌握?
    串行匹配電阻的作用有兩個:1、減少高頻噪聲以及邊沿過衝。如果一個信號的邊沿非常陡峭,則含有大量的高頻成分,將會輻射幹擾,另外,也容易產生過衝。串聯電阻與信號線的分布電容以及負載輸入電容等形成一個RC電路,這樣就會降低信號邊沿的陡峭程度。2、減少高頻反射以及自激振蕩。