免疫調節代謝產物衣康酸修飾NLRP3並抑制炎症小體活化
作者:
小柯機器人發布時間:2020/8/14 17:47:35
愛爾蘭三一學院Luke A.J. O』Neill研究團隊發現免疫調節代謝產物衣康酸修飾NLRP3並抑制炎症小體活化。2020年8月12日,《細胞—代謝》在線發表了這一成果。
研究人員提供了衣康酸修飾NLRP3並抑制炎症小體激活的證據。衣康酸及其衍生物衣康酸4-辛酯(4-OI)能夠抑制NLRP3炎性小體活化,但不抑制AIM2或NLRC4。相反,在缺衣康酸的Irg1-/-巨噬細胞中,NLRP3激活增加。4-OI抑制了NLRP3和NEK7之間的相互作用,這是激活過程中的關鍵步驟,並且抑制了NLRP3上「dicarboxypropylated」 修飾的C548。
此外,4-OI抑制了從冷凍蛋白相關周期性症候群(CAPS)患者分離的PBMC中NLRP3依賴性IL-1β的釋放,並在尿酸鹽誘發腹膜炎的體內模型中減少了炎症。這些結果確定衣康酸是NLRP3炎性小體的內源性代謝調節劑,並描述了一個可治療性幹預的炎症過程。
據悉,克雷布斯循環衍生的代謝物衣康酸在炎性巨噬細胞中高度上調,並通過半胱氨酸修飾靶蛋白發揮免疫調節作用。切割IL-1β、IL-18和Gasdermin D的NLRP3炎性小體必須嚴格控制,以避免過度炎症。
附:英文原文
Title: The Immunomodulatory Metabolite Itaconate Modifies NLRP3 and Inhibits Inflammasome Activation
Author: Alexander Hooftman, Stefano Angiari, Svenja Hester, Sarah E. Corcoran, Marah C. Runtsch, Chris Ling, Melanie C. Ruzek, Peter F. Slivka, Anne F. McGettrick, Kathy Banahan, Mark M. Hughes, Alan D. Irvine, Roman Fischer, Luke A.J. O』Neill
Issue&Volume: 2020-08-12
Abstract: The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1/ macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and 「dicarboxypropylated」 C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders.
DOI: 10.1016/j.cmet.2020.07.016
Source: https://www.cell.com/cell-metabolism/fulltext/S1550-4131(20)30411-3