2016年9月8日/生物谷BIOON/--線粒體呼吸鏈酶複合體I在細胞呼吸和能量代謝中發揮著至關重要的作用。這種分子量大約為1兆道爾頓(MDa)的L形酶複合體是呼吸鏈中最大的蛋白組裝體,而且如今也是迄今為止解析出的最大的不對稱性膜蛋白組裝體。來自奧地利科技學院的Leonid Sazanov教授和他的英國合作者們利用交聯/質譜圖譜輔助下的低溫電子顯微鏡解析出解析度為3.9埃的綿羊(一種哺乳動物)線粒體呼吸鏈酶複合體I的基本完整的原子結構。相關研究結果於2016年9月5日在線發表在
Nature期刊上,論文標題為「Atomic structure of the entire mammalian mitochondrial complex I」。
呼吸鏈產生人體中的大多數能量。幾種大分子量的蛋白組裝體嵌入在線粒體脂質膜中。線粒體呼吸鏈酶複合體I是這個呼吸鏈中第一個也是最大的複合體。來自食物中的代謝物由這個酶複合體進行加工以便促進電子轉移和質子轉運。在此之前,鑑於大型的複雜的分子很難利用當前的方法進行研究,人們僅能夠主要地揭示出缺乏不可或缺的完全的原子細節的聚-丙氨酸(poly-alanine)模型。
由於開發出新的直接電子檢測器,最近幾年,低溫電子顯微鏡取得重大進展,從而允許開展高解析度研究。如今,這種線粒體呼吸鏈酶複合體I結構的解析度允許理解全部45個亞基之間的複雜的排列和相互作用,並且對這種偶聯機制和它的調節產生影響。對線粒體呼吸鏈酶複合體I的作用機制、組裝、成熟和功能故障的認識允許對導致疾病的突變和受影響的酶活性進行詳細的分子分析。
因此,這些研究結果有望為醫學、生物能量學和其他研究領域提供參照信息來源。研究人員旨在理解膜蛋白的結構和功能,並且著重確定線粒體呼吸鏈酶複合體I的結構和機制。(生物谷 Bioon.com)
本文系生物谷原創編譯整理,歡迎轉載!點擊 獲取授權 。更多資訊請下載生物谷APP。Atomic structure of the entire mammalian mitochondrial complex IKarol Fiedorczuk, James A. Letts, Gianluca Degliesposti, Karol Kaszuba, Mark Skehel & Leonid A. Sazanov
doi:
10.1038/nature19794PMC:PMID:Mitochondrial complex I plays a key role in cellular energy production by transferring electrons from NADH to ubiquinone coupled to proton translocation across the membrane1,2. It is the largest protein assembly of the respiratory chain with total mass of 970 kDa3. Here we present a nearly complete atomic structure of ovine mitochondrial complex I at 3.9 Å resolution, solved by cryo-electron microscopy aided by crosslinking/mass-spectrometry mapping. All 14 conserved core and 31 mitochondria-specific supernumerary subunits are resolved within the L-shaped molecule. The hydrophilic matrix arm harbours FMN and 8 iron-sulphur clusters involved in electron transfer, and the membrane arm contains 78 transmembrane helices, mostly contributed by antiporter-like subunits involved in proton translocation. Supernumerary subunits form an interlinked, stabilizing shell around the conserved core. Tightly bound lipids (including cardiolipins) further stabilize interactions between the hydrophobic subunits. Subunits with possible regulatory roles contain additional cofactors, NADPH and two phosphopantetheine molecules, revealed to be involved in inter-subunit interactions. We observe two different conformations of the complex, which may be related to the conformationally driven coupling mechanism and to the active/deactive transition of the enzyme. Our structure provides insight into complex I mechanism, assembly, maturation and dysfunction, allowing detailed molecular analysis of disease-causing mutations.