在重費米子體系中發現外爾費米子激發

2021-02-25 中國物理學會期刊網

作者:郭春煜1 劉洋1 曹超2 袁輝球1

(1 浙江大學關聯物質研究中心)

(2 杭州師範大學物理系)

凝聚態物質中的拓撲序和拓撲相變是物理學中的一個重要發現,它突破了基於對稱性破缺的經典朗道理論,解釋了包括渦旋激發、量子霍爾效應等在內的許多新現象。近年來,人們在凝聚態材料中發現了一系列受對稱性保護的拓撲量子物態,例如拓撲絕緣體、狄拉克半金屬、外爾半金屬等[1—4]。這些拓撲材料表現出獨特的電子性質,在自旋電子器件以及量子計算等方面具有獨特的應用前景。尋找新型拓撲材料、揭示新的拓撲物性仍是當今前沿熱點研究問題。

外爾半金屬是一類重要的拓撲半金屬材料,由於其準粒子低能激發與外爾費米子具有類似的性質而得名。1929 年,赫爾曼·外爾(Hermann Weyl)通過對狄拉克方程做了零質量簡化,得到了所謂的外爾方程,其描述的就是質量為零且具有自旋手性的外爾費米子[5]。尋找外爾費米子一直是高能物理領域中的一個重要課題,然而迄今尚未在實驗上找到相應的粒子。近年來,人們在一些凝聚態物質的電子結構中發現成對出現的外爾點,這些外爾點在表面上的投影由費米弧連接,即一段不閉合的費米面[4]。外爾半金屬表現出許多新奇電學特性,例如線性巨磁阻、手性反常效應和反常霍爾效應等。

迄今為止,絕大部分實驗中確認的外爾半金屬均屬於弱關聯電子體系。在這些材料中,由於電子間關聯效應較弱,第一性原理計算往往能比較準確地預言其能帶結構和拓撲性質,並且能被角分辨光電子能譜等實驗證實。那麼,強關聯電子體系中是否也存在外爾費米子?電子關聯效應與拓撲序相結合後會產生什麼新的現象?怎樣來探測強關聯電子體系中的拓撲性質?

重費米子是一類典型的強關聯電子體系,通常存在於含有f 電子的鑭系或者錒系金屬間化合物中[6—8]。在重費米子體系中,隨著溫度的降低,局域的f 電子通過近藤效應與導帶電子集體雜化而產生巡遊的重電子,其有效質量可高達自由電子質量的上千倍,「重費米子」因此而得名。在這類材料中,局域電子與巡遊電子間的近藤相互作用還會打開一個小的雜化能隙。當費米能級位於雜化能隙之內時,材料呈現出絕緣體或者半導體行為,這類材料又稱近藤絕緣體或者半導體(圖1(b))。而在更多的情況下,費米能級穿過導帶或價帶,材料表現出金屬行為(圖1(c))。因此,重費米子體系可以呈現出非常豐富的量子特性。1979年,德國科學家Frank Steglich 教授(現為浙江大學關聯物質研究中心主任)首次在重費米子金屬CeCu2Si2中發現超導,這也是第一個非常規超導體[9]。到目前為止,人們已經在40 多個重費米子材料中觀察到超導現象。重費米子超導表現出許多與高溫超導相似的性質,對研究高溫超導機理具有重要借鑑意義。另一方面,由於重費米子體系的特徵溫度(例如超導轉變溫度、磁性相變溫度和近藤溫度等)都比較低,其基態連續可調,因而是研究量子相變的理想體系。

圖1 傳導電子與局域電子(a),在低溫下雜化形成近藤絕緣體(b)或者近藤金屬(c)

近年來,人們一直致力於在重費米子材料中尋找拓撲量子態。當重費米子材料的局域f 電子與傳導電子能帶具有不同的宇稱(或更一般地,屬於同一對稱性的不同表示時),其近藤相互作用會打開一個雜化能隙,導致f 電子與傳導電子的能帶發生反轉,在費米面附近出現受拓撲保護的表面態。然而,由於電子的多體相互作用以及f 電子的窄能帶特性等因素,重費米子體系中的拓撲態研究也要比弱關聯電子體系複雜得多。

在已知的材料中,SmB6被認為是一個潛在的拓撲近藤絕緣體。該材料具有高對稱的立方晶體結構,並且在費米能附近只有d 電子和f 電子能帶。最近的一系列實驗表明,SmB6中存在表面金屬態,如樣品厚度對輸運性質的影響[10],角分辨光電子能譜[11],掃描隧道顯微鏡[12]以及非局域輸運性質測量[13]等。另一方面,該材料表現出獨特的量子振蕩行為[14,15],目前其機制尚存在爭議。除了SmB6以外,最近人們在YbB12[16]、CeNiSn[17]等近藤晶格材料中也觀察到了拓撲表面態的跡象。

類似於拓撲近藤絕緣體,人們也一直在重費米子體系中探索是否存在近藤狄拉克或者外爾半金屬。理論計算表明,重費米子半金屬CeRu4Sn6的能帶結構中可能存在8—12 對外爾點[18],但由於其能帶結構的複雜性,這一理論預言尚未被實驗佐證。最近的低溫比熱測量表明,重費米子半金屬Ce3Bi4Pd3 的能帶可能存在外爾點[19]。然而,在分析低溫電子比熱時,該文章引入了一些假設,因而Ce3Bi4Pd3 的拓撲性質仍有待進一步確認。尋找新型拓撲近藤半金屬材料,研究電子關聯效應對外爾點的影響以及可能誘導的新物理現象,亟待更多的實驗和理論研究。

從字面意思來看,重費米子和外爾費米子的概念似乎是矛盾的。外爾費米子在理論上來說是沒有質量的,而重費米子的有效質量卻很重。一個沒有質量的粒子又怎麼會「重」呢?實際上,外爾費米子的「零質量」是指一種獨特的能量—動量色散關係:在外爾點附近,外爾費米子的能量與它的波矢成正比關係,其比例係數也即費米速度是個常數。在重費米子材料中,雖然電子有效質量大,費米速度小,但重費米子能帶同樣可以遵循線性色散關係。

理論上講,尋找近藤外爾半金屬有兩種可能的途徑。第一種方法是在一個存在外爾點的半金屬材料中,通過適當的方法引入近藤效應而使能帶重整化,從而得到近藤外爾半金屬相。另一種可能的方法是在近藤半金屬/半導體材料中,通過調節電子相互作用以及自旋—軌道耦合強度等參數,實現能帶的拓撲轉變,從而得到近藤外爾半金屬相。

YbPtBi 是一個典型的重費米子半金屬材料[20]。通過多種宏微觀物性測量並結合能帶計算,我們首次在該材料體系中發現了外爾費米子的實驗證據,觀察到外爾電子態隨電子相互作用變化所呈現出來的一些新穎性質[21]。

在高溫區間,4f 電子是局域的,與周圍的巡遊電子雜化比較弱,類似於弱關聯電子材料。角分辨光電子能譜測量與能帶計算的結果表明,該材料的能帶結構中存在三重簡併點,並且位於費米能級附近(圖2(a))。在外加磁場下,這些三重簡併點將進一步劈裂,從而形成外爾點。通過轉角磁阻測量,我們也證實了外爾點的存在,觀測到了明顯的手性反常效應。

圖2 YbPtBi 的高溫拓撲性質[21] (a)沿著ΓL 方向的能帶結構示意圖;(b)載流子濃度與徑向負磁阻之間的關係

此外,我們還系統地研究了徑向電阻手性反常效應隨樣品載流子濃度的變化[22]。通過改變材料的生長條件,包括調節助溶劑Bi 的比例或者通過Au 元素的摻雜等,成功製備了一批具有不同載流子濃度的樣品,得到了徑向負磁阻效應與樣品載流子濃度之間的關係,發現徑向負磁阻僅出現在電子型載流子的臨界閾值附近(圖2(b)),與我們能帶計算的結果一致,進一步表明YbPtBi 的徑向負磁阻是由手性反常效應導致的,外爾點出現在費米能附近。

隨著溫度的下降,局域的f 電子與巡遊電子雜化增強,形成有效質量很重的複合費米子,導致其費米速度迅速下降。與之相應,手性反常效應對徑向磁阻的貢獻迅速減少,在20 K以下可以忽略。由於近藤溫度較低,目前的角分辨光電子能譜的能量解析度還不足以揭示重費米子態中的能帶拓撲結構。另一方面,重費米子體系的電子比熱係數很大,有利於精密測量比熱隨溫度的變化。通過低溫比熱測量,我們發現電子比熱係數正比於溫度的二次方(圖3(a)),與具有線性色散關係的外爾點一致。此外,還在30 K以下觀察到了明顯的拓撲霍爾效應(圖3(b)),進一步表明非平庸拓撲態的存在。

圖3 YbPtBi 的低溫拓撲性質[21] (a)比熱Cp與溫度T 的三次方依賴關係;(b)不同溫度下的拓撲霍爾效應

我們的實驗結果首次表明,在重費米子體系中存在外爾費米子激發,並且電子的關聯效應可以調節外爾費米子的性質(圖4),產生不同於弱關聯外爾半金屬的奇異行為。這些發現為研究具有近藤相互作用的外爾費米子半金屬提供了一個範例,為研究拓撲態與電子關聯效應和拓撲量子相變提供了一個新的平臺,進一步表明強關聯電子體系蘊藏的豐富物理內涵。

圖4 外爾費米子隨雜化強度演化的示意圖(a)當局域電子(紅色)與傳導電子(藍色)雜化較弱時,傳導電子能帶中存在外爾點;(b)隨著雜化強度的增強,能帶發生重整化,電子有效質量增加,外爾點仍然保留,但雜化後形成的準粒子的費米速度急劇減少

參考文獻

[1] Hasan M Z,Kane C L. Reviews of Modern Physics,2010,82:3045

[2] Haldane F D M. Reviews of Modern Physics,2017,89:040502

[3] Qi X L,Zhang S C. Reviews of Modern Physics,2011,83:1057

[4] Armitage N P,Mele E J,Vishwanath A. Reviews of Modern Physics,2018,90(1):015001

[5] Weyl H. Proceedings of the National Academy of Sciences,1929,15:323

[6] Stewart S G R. Reviews of Modern Physics,1984,56(4):755

[7] Weng Z F,Smidman M,Jiao L et al. Reports on Progress in Physics,2016,79:094503

[8] Steglich F,Wirth S. Reports on Progress in Physics,2016,79:084502

[9] Steglich F et al. Physical Review Letters,1979,43:1892

[10] Syers P,Kim D,Fuhrer M S et al. Physical Review Letters,2015,114:096601

[11] Denlinger J D,Allen J W,Kang J S et al. Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013),2014,1:017038

[12] Jiao L,Rößler S,Kim D J et al. Nature Communications,2016,7:13762

[13] Kim D J et al. Scientific Reports,2013,3:3150

[14] Li G,Xiang Z,Yu F et al. Science,2014,346(6214):1208

[15] Tan B S,Hsu Y T,Zeng B et al. Science,2015,349(6245):287

[16] Weng H,Zhao J,Wang Z et al. Physical Review Letters,2014,112:016403

[17] Chang PY et al. Nature Physics,2017,13(8):794

[18] Xu Y et al. Physical Review X,2017,7:011027

[19] Dzsaber S et al. Physical Review Letters,2017,118:246601

[20] Fisk Z et al. Physical Review Letters,1991,67:3310

[21] Guo C Y et al. Nature Communications,2018,9:4622

[22] Guo C Y et al. AIP Advances,2018,8:101336

相關焦點

  • 進展|外爾費米子與鐵磁自旋波共舞
    外爾半金屬的費米面有且僅有孤立的能帶交叉點構成,因而其低能激發的準粒子可以用描述外爾費米子的外爾方程來刻畫,具有外爾費米子的零質量、確定手性等特徵。雖然自由粒子形式的外爾費米子至今未能被實驗確認,但在外爾半金屬中卻能夠實現外爾費米子形式的準粒子,這為研究外爾費米子的行為提供了新的途徑。固體中的外爾費米子準粒子還具有不同於真空中真實粒子的獨特物理性質和新奇現象,譬如費米弧和手性反常導致的磁阻效應、內稟反常霍爾效應、三維量子霍爾效應等。因此,首個非磁性外爾半金屬TaAs家族材料的發現具有重要科學意義,極大地推動了外爾半金屬的研究進展。
  • 中國科學家發現外爾費米子 可用於手機電池和量子計算機
    英國皇家化學協會網站7月16日報導說:「有兩個國際研究組聲稱發現了電子學的基本建築單元——外爾費米子。」 中科院物理所的陳根富小組首先製備出了具有原子級平整表面的大塊TaAs晶體,而外爾費米子就藏身於這種晶體中。隨後物理所丁洪小組利用上海光源「夢之線」的同步輻射光束照射TaAs晶體,使得外爾費米子80多年後第一次展現在科學家面前。
  • 中科院物理所方忠團隊首次發現外爾費米子
    原標題:中科院物理所方忠團隊首次發現外爾費米子  本報北京7月20日電 記者齊芳從中科院物理所獲悉,由中科院物理所方忠研究員帶領的團隊日前首次在實驗中發現了外爾費米子(Weyl費米子)。科學家們認為,這一發現對拓撲電子學和量子計算機等顛覆性技術的突破具有非常重要的意義。
  • 中科院被《科學》拒稿,讓普林斯頓「先」發現了外爾費米子?
    7月16日,《科學》雜誌在線發表了美國普林斯頓大學物理學家扎伊德·哈桑團隊的實驗成果,該研究團隊宣布他們在「外爾半金屬」中發現了「外爾費米子」。同一天,《科學》雜誌還在線發表了美國麻省理工學院陸凌等人的研究成果,該研究團隊宣布在光學晶體裡發現「外爾玻色子」。
  • 理論預言並實驗發現固體中的無質量費米子態丨物理所入選「率先...
    今天為大家介紹面向世界科技前沿的「理論預言並實驗發現固體中的無質量費米子態」成果進展。實驗發現外爾費米子1929年德國科學家外爾Weyl提出——存在一種無「質量」的可以分為左旋和右旋兩種不同「手性」的電子,這種電子被稱為「外爾費米子」。
  • 進展|外爾半金屬中巨大熱導率量子振蕩的發現和手性零聲的證據
    該定律所描述的熱和電的輸運關係是朗道費米液體的基本性質之一,但是其在拓撲半金屬體系中的適用性仍然不明確。拓撲半金屬的電輸運測量,尤其是電導率的量子振蕩,是理解該類材料拓撲電子物性的關鍵手段。相比之下,很少有研究者會嘗試測量金屬或半金屬體系的熱導率量子振蕩。其中一個重要原因是,基於電導率的測量結果和 WF定律,我們可以簡單地估計出熱導率量子振蕩。其通常是非常微弱並難以測量。
  • 物理學系教授修發賢課題組在外爾半金屬電磁響應的研究中取得重要...
    近日,復旦大學物理學系教授修發賢、晏湖根課題組和南京大學電子科學與工程學院教授施毅課題組在外爾半金屬中發現獨特的電磁響應特性即動態手徵反常。實驗中,有一類特殊的材料被稱為外爾半金屬,其中的準粒子(外爾費米子)與自由空間的外爾費米子類似,是一類手徵費米子,在固體中會成對出現。因此,這種特殊材料可以被看成是裝滿了左、右手性粒子的盒子。在外加磁場下,該手徵的對稱性會被打破,從而產生手徵反常。嚴格來說,手徵反常描述了相對論費米子在量子化下產生的手徵對稱性破缺。
  • 首次實驗證明:Weyl費米子存在於,慢磁漲落的順磁性體中!
    一種特殊的基本粒子,外爾(Weyl)費米子,幾年前被首次發現。Weyl費米子的特點是:Weyl費米子以一種有序的方式在材料中移動,幾乎不讓它們相互碰撞,因此非常節能。這為未來的電子產品開闢了有趣的可能性。到目前為止,Weyl費米子只在某些非磁性材料中被發現。
  • 進展|重費米子體系中雜化動力學的理論研究與實驗探測
    中國科學院物理研究所/北京凝聚態物理國家研究中心EX9組的楊義峰研究員與合作者一起,對這一問題進行了長期探索,發展了唯象的重費米子二流體理論,並提出以雜化的動力學漲落為基礎,重新建立重費米子物理的基本理論圖像。
  • 【科學講座】翁紅明:拓撲半金屬——新奇費米子的固體宇宙
    10月29日晚七點,中科院物理所研究員,博士生導師翁紅明研究員在階一五教室為同學們帶來題為「拓撲半金屬——新奇費米子的固體宇宙」的科學講座。  首先,翁紅明簡要介紹了凝聚態物理的含義及應用等。
  • 進展 | 重費米子體系中雜化動力學的理論研究與實驗探測
    但是近些年來,有越來越多的實驗證據表明,真正理解重費米子的局域-巡遊轉變物理必須超越平均場理論的簡化圖像。中國科學院物理研究所/北京凝聚態物理國家研究中心EX9組的楊義峰研究員與合作者一起,對這一問題進行了長期探索,發展了唯象的重費米子二流體理論,並提出以雜化的動力學漲落為基礎,重新建立重費米子物理的基本理論圖像。
  • 進展|黑磷中的黑洞:費米子的高溫霍金輻射
    然而,在宇宙中,黑洞的霍金輻射因其極低的霍金溫度(納開爾文量級,遠低於微波背景輻射溫度)尚未被實驗證實。為了提高霍金溫度便於實驗觀測,人們提出了利用經典流體、量子流體、光纖等各種人工系統模擬黑洞及其輻射的方案。然而,到目前為止,玻色-愛因斯坦凝聚體中的聲學黑洞的納開爾文量級的霍金溫度依然很難被實驗觀測。光纖中的光學模擬黑洞也備受爭議。
  • Majorana費米子與拓撲量子計算(上)
    2.2 凝聚態中的Majorana費米子凝聚態體系中的基本研究對象是電子,所涉及的基本相互作用是電磁相互作用。作為一個量子多體系統,其低能集體激發會演生出許多重要的基本元激發準粒子。另外,金屬系統都存在一個費米面,費米面以下是填滿了電子的費米海,這恰好是Dirac 曾經所提出的試圖用來解釋反粒子的物理圖像。
  • 盛利和邢定鈺課題組建立外爾半金屬負磁電阻的新理論
    外爾半金屬是一種新型的拓撲材料,可以看作粒子物理中標準模型的外爾費米子在凝聚態物理中的實現。
  • 進展|在一種單層鐵磁材料中發現外爾節線
    目前,人們已經發現了多種拓撲能帶結構,比如狄拉克錐(Dirac cone)、外爾錐(Weyl cone)以及狄拉克/外爾節線(Dirac/Weyl nodal line)。這類拓撲能帶結構會帶來奇特的物理現象,比如手性反常、超大磁阻等。然而,除了石墨烯早已被證實擁有二維狄拉克錐之外,這類奇特的拓撲能帶結構在二維材料中非常罕見。
  • 實驗發現重費米子金屬UTe2為手性自旋三重態超導體
    發現新粒子是物理學家們樂此不疲的尋寶遊戲。有時候這樣的獵奇活動是藉助於巨大的加速器實現的,高能粒子束的碰撞可以產生新的粒子或者揭示新的物理規律。對於研究固體物理的科學家來說,這一遊戲則是在完全不同的環境中展開的,這裡沒有高能的粒子撞擊,但是固體材料中深藏的多種複雜的粒子間相互作用則可以湧現出類似於粒子的集體激發,又稱作準粒子。