從原理到製造再到應用,這篇文章終於把MEMS技術講透了!

2021-02-23 物聯傳媒

本文作者:阿hong

本文來源:知乎

投稿郵箱:zzl@ulinkmedia.cn

MEMS的快速發展基於相關技術的相對成熟,但是MEMS對於大部分人來說還是比較陌生的。對此,本文將詳細為你講述MEMS技術,帶你全方位的了解MEMS。

寫在前面

雖然大部分人對於MEMS(Microelectromechanical systems,微機電系統/微機械/微系統)還是感到很陌生,但是其實MEMS在我們生產,甚至生活中早已無處不在了,智慧型手機,健身手環、印表機、汽車、無人機以及VR/AR頭戴式設備,部分早期和幾乎所有近期電子產品都應用了MEMS器件。

MEMS是一門綜合學科,學科交叉現象及其明顯,主要涉及微加工技術,機械學/固體聲波理論,熱流理論,電子學,生物學等等。MEMS器件的特徵長度從1毫米到1微米,相比之下頭髮的直徑大約是50微米。

MEMS傳感器主要優點是體積小、重量輕、功耗低、可靠性高、靈敏度高、易於集成等,是微型傳感器的主力軍,正在逐漸取代傳統機械傳感器,在各個領域幾乎都有研究,不論是消費電子產品、汽車工業、甚至航空航天、機械、化工及醫藥等各領域。

常見產品有壓力傳感器,加速度計,陀螺,靜電致動光投影顯示器,DNA擴增微系統,催化傳感器。

MEMS的快速發展是基於MEMS之前已經相當成熟的微電子技術、集成電路技術及其加工工藝。 MEMS往往會採用常見的機械零件和工具所對應微觀模擬元件,例如它們可能包含通道、孔、懸臂、膜、腔以及其它結構。然而,MEMS器件加工技術並非機械式。相反,它們採用類似於集成電路批處理式的微製造技術。

批量製造能顯著降低大規模生產的成本。若單個MEMS傳感器晶片面積為5 mm x 5 mm,則一個8英寸(直徑20釐米)矽片(wafer)可切割出約1000個MEMS傳感器晶片(圖1),分攤到每個晶片的成本則可大幅度降低。

因此MEMS商業化的工程除了提高產品本身性能、可靠性外,還有很多工作集中於擴大加工矽片半徑(切割出更多晶片),減少工藝步驟總數,以及儘可能地縮傳感器大小。

圖1. 8英寸矽片上的MEMS晶片(5mm X 5mm)示意圖

圖2. 從矽原料到矽片過程。矽片上的重複單元可稱為晶片(chip 或die)。

MEMS需要專門的電子電路IC進行採樣或驅動,一般分別製造好MEMS和IC粘在同一個封裝內可以簡化工藝,如圖3。不過具有集成可能性是MEMS技術的另一個優點。

正如之前提到的,MEMS和ASIC (專用集成電路)採用相似的工藝,因此具有極大地潛力將二者集成,MEMS結構可以更容易地與微電子集成。然而,集成二者難度還是非常大,主要考慮因素是如何在製造MEMS保證IC部分的完整性。

例如,部分MEMS器件需要高溫工藝,而高溫工藝將會破壞IC的電學特性,甚至熔化集成電路中低熔點材料。MEMS常用的壓電材料氮化鋁由於其低溫沉積技術,因為成為一種廣泛使用post-CMOS compatible(後CMOS兼容)材料。

雖然難度很大,但正在逐步實現。與此同時,許多製造商已經採用了混合方法來創造成功商用並具備成本效益的MEMS 產品。一個成功的例子是ADXL203,圖4。

ADXL203是完整的高精度、低功耗、單軸/雙軸加速度計,提供經過信號調理的電壓輸出,所有功能(MEMS & IC)均集成於一個單晶片中。這些器件的滿量程加速度測量範圍為±1.7 g,既可以測量動態加速度(例如振動),也可以測量靜態加速度(例如重力)。

圖3. MEMS與IC在不同的矽片上製造好了再粘合在同一個封裝內

圖4. ADXL203(單片集成了MEMS與IC)


圖7. 智慧型手機簡化示意圖

在智慧型手機中,iPhone 5採用了4個 MEMS傳感器,三星Galaxy S4手機採用了八個MEMS傳感器。

iPhone 6 Plus使用了六軸陀螺儀&加速度計(InvenSense MPU-6700)、三軸電子羅盤(AKM AK8963C)、三軸加速度計(Bosch Sensortec BMA280),磁力計,大氣壓力計(Bosch Sensortec BMP280)、指紋傳感器(Authen Tec的TMDR92)、距離傳感器,環境光傳感器(來自AMS的TSL2581 )和MEMS麥克風。

iphone 6s與之類似,稍微多一些MEMS器件,例如採用了4個MEMS麥克風。預計將來高端智慧型手機將採用數十個MEMS器件以實現多模通信、智能識別、導航/定位等功能。 MEMS硬體也將成為LTE技術亮點部分,將利用MEMS天線開關和數字調諧電容器實現多頻帶技術。

以智慧型手機為主的行動裝置中,應用了大量傳感器以增加其智能性,提高用戶體驗。這些傳感器並非手機等移動/通信設備獨有,在本文以及後續文章其他地方所介紹的加速度、化學元素、人體感官傳感器等可以了解相關信息,在此不贅敘。此處主要介紹通信中較為特別的MEMS器件,主要為與射頻相關MEMS器件。

通信系統中,大量不同頻率的頻帶(例如不同國家,不同公司間使用不同的頻率,2G,3G,LTE,CDMD以及藍牙,wifi等等不同技術使用不同的通信頻率)被使用以完成通訊功能,而這些頻帶的使用離不開頻率的產生。

聲表面波器件,作為一種片外(off-chip)器件,與IC集成難度較大。表面聲波(SAW)濾波器曾是手機天線雙工器的中流砥柱。2005年,安捷倫科技推出基於MEMS體聲波(BAW)諧振器的頻率器件(濾波器),該技術能夠節省四分之三的空間。

BAW器件不同於其他MEMS的地方在於BAW沒有運動部件,主要通過體積膨脹與收縮實現其功能。(另外一個非位移式MEMS典型例子是依靠材料屬性變化的MEMS器件,例如基於相變材料的開關,加入不同電壓可以使材料發生相變,分別為低阻和高阻狀態,詳見後續開關專題)。

在此值得一提的事,安華高Avago(前安捷倫半導體事業部)賣的如火如荼的薄膜腔聲諧振器(FBAR)。也是前段時間天津大學在美國被抓的zhang hao研究的東西。得益於AlN氮化鋁壓電材料的沉積技術的巨大進步,AlN FBAR已經被運用在iphone上作為重要濾波器組件。下圖為FBAR和為SMR (Solidly Mounted Resonator)。其原理主要通過固體聲波在上下表面反射形成諧振腔。

圖8. FBAR示意圖,壓電薄膜懸空在腔體至上

圖9. SMR示意圖(非懸空結構,採用Bragg reflector布拉格反射層)

如果所示,其中的紅色線條表示震動幅度。固體聲波在垂直方向發生反射,從而將能量集中於中間橙色的壓電層中。頂部是與空氣的交界面,接近於100%反射。底部是其與布拉格反射層的界面,無法達到完美反射,因此部分能量向下洩露。

實物FBAR掃描電鏡圖。故意將其設計成不平行多邊形是為了避免水平方向水平方向反射導致的諧振,如果水平方向有諧振則會形成雜波。

上圖所示為消除雜波前後等效導納(即阻抗倒數,或者簡單理解為電阻值倒數)。消除雜波後其特性曲線更平滑,效率更高,損耗更小,所形成的濾波器在同頻帶內的紋波更小。

圖示為若干FBAR連接起來形成濾波器。右圖為封裝好後的FBAR濾波器晶片及米粒對比,該濾波器比米粒還要小上許多。

圖10. 用戶與物聯網

可穿戴/植入式MEMS屬於物聯網IoT重要一部分,主要功能是通過一種更便攜、快速、友好的方式(目前大部分精度達不到大型外置儀器的水平)直接向用戶提供信息。可穿戴/應該說是最受用戶關注,最感興趣的話題了。

大部分用戶對汽車、印表機內的MEMS無感,這些器件與用戶中間經過了數層中介。但是可穿戴/直接與用戶接觸,提升消費者科技感,更受年輕用戶喜愛,例子可見Fitbit等健身手環。

該領域最重要的主要有三大塊:消費、健康及工業,我們在此主要討論更受關注的前兩者。消費領域的產品包含之前提到的健身手環,還有智能手錶等。健康領域,即醫療領域,主要包括診斷,治療,監測和護理。

比如助聽、指標檢測(如血壓、血糖水平),體態監測。MEMS幾乎可以實現人體所有感官功能,包括視覺、聽覺、味覺、嗅覺(如Honeywell電子鼻)、觸覺等,各類健康指標可通過結合MEMS與生物化學進行監測。MEMS的採樣精度,速度,適用性都可以達到較高水平,同時由於其體積優勢可直接植入人體,是醫療輔助設備中關鍵的組成部分。

傳統大型醫療器械優勢明顯,精度高,但價格昂貴,普及難度較大,且一般一臺設備只完成單一功能。相比之下,某些醫療目標可以通過MEMS技術,利用其體積小的優勢,深入接觸測量目標,在達到一定的精度下,降低成本,完成多重功能的整合。

以近期所了解的一些MEMS項目為例,通過MEMS傳感器對體內某些指標進行測量,同時MEMS執行器(actuator)可直接作用於器官或病變組織進行更直接的治療,同時系統可以通過MEMS能量收集器進行無線供電,多組單元可以通過MEMS通信器進行信息傳輸。

個人認為,MEMS醫療前景廣闊,不過離成熟運用還有不短的距離,尤其考慮到技術難度,可靠性,人體安全等。

圖11. MEMS實現人體感官功能

可穿戴設備中最著名,流行的便數蘋果手錶了,其實蘋果手錶和蘋果手錶結構已經非常相似了,處理器、存儲單元、通信單元、(MEMS)傳感器單元等,因此對此不在贅敘。

圖12. 蘋果手表示意圖

投影儀所採用的MEMS微鏡如圖13,14所示。其中掃描電鏡圖則是來自於TI的Electrostatically-driven digital mirrors for projection systems。

每個微鏡都由若干錨anchor或鉸鏈hinge支撐,通過改變外部激勵從而控制同一個微鏡的不同錨/鉸鏈的尺寸從而微鏡傾斜特定角度,將入射光線向特定角度反射。

大量微鏡可以形成一個陣列從而進行大面積的反射。錨/鉸鏈的尺寸控制可以通過許多方式實現,一種簡單的方式便是通過加熱使其熱膨脹,當不同想同一個微鏡的不同錨/鉸鏈通入不同電流時,可以使它們產生不同形變,從而向指定角度傾斜。TI採用的是靜電驅動方式,即通入電來產生靜電力來傾斜微鏡。

圖13 微鏡的SEM示意圖

圖14 微鏡結構示意圖

德州儀器的數字微鏡器件(DMD),廣泛應用於商用或教學用投影機單元以及數字影院中。每16平方微米微鏡使用其與其下的CMOS存儲單元之間的電勢進行靜電致動。灰度圖像是由脈衝寬度調製的反射鏡的開啟和關閉狀態之間產生的。

顏色通過使用三晶片方案(每一基色對應一個晶片),或通過一個單晶片以及一個色環或RGB LED光源來加入。採用後者技術的設計通過色環的旋轉與DLP晶片同步,以連續快速的方式顯示每種顏色,讓觀眾看到一個完整光譜的圖像。

TI有一個非常非常具體生動的視頻介紹該產品,你可以在這個視頻中看到整個微鏡陣列如何對光進行不同角度的折射。

圖15 微鏡反射光線示意圖

加速度傳感器是最早廣泛應用的MEMS之一。MEMS,作為一個機械結構為主的技術,可以通過設計使一個部件(圖15中橙色部件)相對底座substrate產生位移(這也是絕大部分MEMS的工作原理),這個部件稱為質量塊(proof mass)。質量塊通過錨anchor,鉸鏈hinge,或彈簧spring與底座連接。

綠色部分固定在底座。當感應到加速度時,質量塊相對底座產生位移。通過一些換能技術可以將位移轉換為電能,如果採用電容式傳感結構(電容的大小受到兩極板重疊面積或間距影響),電容大小的變化可以產生電流信號供其信號處理單元採樣。通過梳齒結構可以極大地擴大傳感面積,提高測量精度,降低信號處理難度。加速度計還可以通過壓阻式、力平衡式和諧振式等方式實現。

圖15 MEMS加速度計結構示意圖

圖16 MEMS加速度計中位移與電容變化示意圖

汽車碰撞後,傳感器的proof mass產生相對位移,信號處理單元採集該位移產生的電信號,觸發氣囊。更直觀的效果可以觀看視頻。

圖17. 汽車碰撞後加速度計的輸出變化。 

實物圖,比例尺為20微米,即20/1000毫米。

一種設計精巧的列印噴如下圖所示。兩個不同大小的加熱元件產生大小不一的氣泡從而將墨水噴出。具體過程為:1,左側加熱元件小於右側加熱元件,通入相同電流時,左側產生更多熱量,形成更大氣泡。左側氣泡首先擴大,從而隔絕左右側液體,保持右側液體高壓力使其噴射。噴射後氣泡破裂,液體重新填充該腔體。

圖18. 採用氣泡膨脹的噴墨式MEMS

圖19. HP生產的噴墨式MEMS相關產品

另一種類型MEMS列印噴頭,也是通過加熱,氣泡擴大將墨水擠出:

MEMS噴頭nozzle及加熱器heater實物圖:

還有一種類型是通過壓電薄膜震動來擠壓墨水出來:

MEMS繼電器與開關。其優勢是體積小(密度高,採用微工藝批量製造從而降低成本),速度快,有望取代帶部分傳統電磁式繼電器,並且可以直接與集成電路IC集成,極大地提高產品可靠性。

其尺寸微小,接近於固態開關,而電路通斷採用與機械接觸(也有部分產品採用其他通斷方式),其優勢劣勢基本上介於固態開關與傳統機械開關之間。MEMS繼電器與開關一般含有一個可移動懸臂梁,主要採用靜電致動原理,當提高觸點兩端電壓時,吸引力增加,引起懸臂梁向另一個觸電移動,當移動至總行程的1/3時,開關將自動吸合(稱之為pull in現象)。pull in現象在宏觀世界同樣存在,但是通過計算可以得知所需的閾值電壓高得離譜,所以我們日常中幾乎不會看到。

圖20. MEMS開關斷合示意圖

再貼上幾張實物圖片,與示意圖並非完全一致,但是原理類似,都是控制著一個間隙gap接觸與否:

生物類實驗

MEMS器件由於其尺寸接近生物細胞,因此可以直接對其進行操作。

圖21. MEMS操作細胞示意圖

NEMS(Nanoelectromechanical systems, 納機電系統)與MEMS類似,主要區別在於NEMS尺度/重量更小,諧振頻率高,可以達到極高測量精度(小尺寸效應),比MEMS更高的表面體積比可以提高表面傳感器的敏感程度,(表面效應),且具有利用量子效應探索新型測量手段的潛力。

首個NEMS器件由IBM在2000年展示, 如圖22所示。器件為一個 32X32的二維懸臂梁(2D cantilever array)。該器件採用表面微加工技術加工而成(MEMS中採用應用較多的有體加工技術,當然MEMS也採用了不少表面微加工技術,關於微加工技術將會在之後的專題進行介紹)。

該器件設計用來進行超高密度,快速數據存儲,基於熱機械讀寫技術(thermomechanical writing and readout),高聚物薄膜作為存儲介質。該數據存儲技術來源於AFM(原子力顯微鏡)技術,相比磁存儲技術,基於AFM的存儲技術具有更大潛力。

快速熱機械寫入技術(Fast thermomechanical writing)基於以下概念(圖23),『寫入』時通過加熱的針尖局部軟化/融化下方的聚合物polymer,同時施加微小壓力,形成納米級別的刻痕,用來代表一個bit。加熱時通過一個位於針尖下方的阻性平臺實現。

對於『讀』,施加一個固定小電流,溫度將會被加熱平臺和存儲介質的距離調製,然後通過溫度變化讀取bit。 而溫度變化可通過熱阻效應(溫度變化導致材料電阻變化)或者壓阻效應(材料收到壓力導致形變,從而導致導致材料電阻變化)讀取。

圖22. IBM 二維懸臂梁NEMS掃描電鏡圖(SEM)其針尖小於20nm

圖23.快速熱機械寫入技術示意圖

GPS VS 北鬥,兩大定位技術深度解析

室內定位系列報告之二:技術篇

室內定位系列報告之一:前景篇

低功耗廣域物聯網(LPWAN-IOT)安全技術研究

一文看懂雲計算、霧計算、霾計算、邊緣計算以及認知計算


2017中國國際物聯網博覽會(夏季展)

2017亞洲智慧卡暨金融消費博覽會(夏季展)

深圳國際智能建築電氣&智能家居博覽會

8月16-18日 

深圳會展中心



相關焦點

  • 這篇文章,講透「復盤」
    很多人對復盤有一個誤區:認為「復盤」就等於「我做了什麼」。 可能是一些環節,可能是一些內容,可能是一些跟學員互動的方式…… 每一期我都會去思考:這一期裡面,有哪些做法是可以保留的,哪些地方還可以再優化?然後在新一期裡面嘗試新的做法。得到了驗證和肯定,再把它沿襲到下一期;而反饋不夠好的,要麼砍掉,要麼改掉…… 這其實就是一個「迭代」的過程。
  • MEMS傳感器工作原理及應用
    它涉及電子、機械、材料、物理學、化學、生物學、醫學等多種學科與技術,具有廣闊的應用前景。截止到2010年,全世界有大約600餘家單位從事MEMS的研製和生產工作,已研製出包括微型壓力傳感器、加速度傳感器、微噴墨列印頭、數字微鏡顯示器在內的幾百種產品,其中MEMS傳感器佔相當大的比例。MEMS傳感器是採用微電子和微機械加工技術製造出來的新型傳感器。
  • 這篇文章終於講透了
    目前市面上主流的牆面裝飾材料大致有乳膠漆和藝術漆,這兩者之間究竟有什麼區別?藝術漆和乳膠漆哪個好?這是很多人都很困惑的事情,接下來一篇文章講透藝術漆和乳膠漆這點事,為大家揭開兩者之間的「小秘密」。但是乳膠漆的缺點也是很明顯的,比如說,色調單一,缺少層次變化,時間久了容易開裂,如果要調色的話,又很考驗技術,一般人操作不好。相比較乳膠漆,藝術漆的優點就更加的明顯了,不僅更加的環保,零甲醛,壽命長。同時藝術漆的層次肌理變化很豐富,多層次的立體造型,色彩飽滿,可以打造個性的牆面裝飾。牆面弄髒了,也可以用乾濕的抹布進行擦拭,不影響牆面的原本基色。
  • 五星教學原理:讀懂這篇文章就可以了
    五星教學原理1:聚焦問題學習科學:概念重要、概念所在的情景更重要五星教學原理2:激活舊知學習科學=要利用學生的舊知五星教學原理4:應用新知學習科學:讓學生在學習過程中不斷地外化表達五星教學原理5:融會貫通=反思(學習科學)學習科學:反思,從具體到抽象如果說兩者有什麼差異,也是有的
  • 5篇文章,讓你學會金字塔原理(1)
    當然,想詳盡完整拆解一本書,一篇文章肯定不夠,所以我打算寫五篇,也希望你在看完這五篇後,相比看五篇雞湯文,能多給自己留下點什麼。原因就在於用了金字塔原理來表達:如果沒有感覺出來多大不同,那麼請再翻上去細品。如果你產生點興趣,這就引出我想跟你講的第一個知識點:金字塔原理的四個基本特徵——結論先行,上下對應,分類清楚,排序邏輯。
  • 這篇文章講透了
    隔三岔五就有文章這樣報導他:「剛剛,這位中國老人,突然回國,美國人徹底慌了!」「中國再一次在核心領域突破技術『無人區』,彎道超車,率先掌握5納米半導體技術!」尹志堯稱,這些誇大報導搞得他們很被動。中微不是製造晶片的,是為晶片廠提供設備的。他們多次要求把文章從網站撤下,但過一些時候,又改頭換面登出來,實在令人頭痛。
  • 什麼叫工業4.0,這篇文章用大白話終於講懂了
    這三個定義都很學術,你們放心,這是我全文最學術的一段話,後面,我決定老和尚講故事的方法來給大家講這個故事。ERP和MES的問題只是工廠內系統斷層的一個問題縮影,事實上工廠裡還有非常多的其他系統,設計、製造、採購、辦公等等,這些系統都是一個個的信息孤島,互相都不知道對方在幹啥,幹到哪一步了。其中一個部分出了特殊情況,其他部分都不知道,只有等到問題出現了,才能退回來,所有系統再一個個改。
  •  mems加速度計的性能解答(六)
    打開APP  mems加速度計的性能解答(六) 發表於 2020-04-16 16:31:19 mems加速度計的性能解答 線性度  線性度主要是為了使加速度計有較好的線性輸出,即MEMS晶片輸出的電壓值(模擬或數字)與晶片受到的加速度值成正比。
  • 終於悟到了!計算機原理!
    比如講軟體工程以及開發項目管理的時候,概念先灌輸了一大堆,大多數東西對我來說神秘莫測。理想的方式,是給出一個場景,比如從一個idea開始,到一個產品基本構思,然後落地到實際的開發任務,在模擬開發過程中,逐漸引出軟體工程以及項目管理方面的各種知識,猶如徹底體驗了一次,形成深刻印象。這就是我認為的所謂場景教學。
  • 選購指南,全面分析mems加速度計SiA200系列應用領域
    電容式mems加速度計SiA230外觀圖Mems加速度計SiA200用於慣性測量單元Mems根據國外的市場應用表現來看,mems加速度計和mems陀螺儀構成的慣性測量單元遠遠優於常規導航系統,尤其在武器制導系統、發火控制系統、安全系統等方面。比如國外某著名公司推出的IMU可以實現在高級運動分析與導航航跡推算功能上,也就是在軍事、宇航都高端領域應用,作為國內首款用於中高端慣性領域的SiA200系列,其成本是其它傳感器成本的十分之一。
  • 基於MEMS技術的加速度傳感器分析與應用
    高速發展的電子及其製造技術使微機電系統(Micro-Electro-Mechanical-SySTems ,MEMS)迅速普及。其實基於MEMS技術的加速度傳感器、壓力傳感器、陀螺儀等已經有30餘年的應用歷史,但由於技術和成本等多方面的原因,這些技術主要應用於工業、軍事、汽車製造、儀器儀表,及醫療等領域,而未進入消費類產品市場。
  • 終於有人把Elasticsearch原理講透了!
    呂老師:但是 Lucene 還是一個庫,必須要懂一點搜尋引擎原理的人才能用的好,所以後來又有人基於 Lucene 進行封裝,寫出了 Elasticsearch。呂老師:這個問題問得好,這涉及到分詞的問題,Keyword 類型是不會分詞的,直接根據字符串內容建立反向索引,Text 類型在存入 Elasticsearch 的時候,會先分詞,然後根據分詞後的內容建立反向索引
  • 四核處理器和八核處理器的區別,這篇文章終於講明白了
    四核處理器和八核處理器的區別,這篇文章終於講明白了 佚名 發表於 2017-12-13 09:42:36 一、四核處理器介紹 四核處理器即是基於單個半導體的一個處理器上擁有四個一樣功能的處理器核心
  • MEMS高級培訓課程-2019年
    ;(3)光學傳感器和氣體傳感器技術及應用;(4)MEMS諧振器和振蕩器技術及應用;(5)MEMS製造工藝;(6)MEMS封裝技術;(7)MEMS產線參觀學習:蘇州MEMS中試平臺和捷研芯量產封裝產線。同時,高端慣性傳感器市場有望進入新一輪繁榮周期,這主要受到兩大趨勢的推動:(1)機器人和工業應用持續增長;(2)汽車ADAS和自動駕駛時代來臨。高集成度、減小尺寸並降低成本是慣性傳感器的發展趨勢,因此組合式傳感器技術和標準化平臺廣受歡迎。
  • 這篇文章把數據講透了(四):數據挖掘
    一、前言 上一期文章中,我們已經了解到「數據」是一個龐大的體系(如下圖所示);並用了「洗菜、擇菜」的例子,為大家講解數據清洗的含義;而今天筆者主要給大家講解當淨菜備好後
  • CNC刀柄的那些事,這篇文章來說透!
    這是金屬加工(mw1950pub)發布的第12386篇文章 編者按 BT刀柄中的7:24是什麼意思?BT、NT、JT、IT、CAT是什麼標準?
  • 晶片精品文章合集(500篇!)
    本文收集了EETOP公眾號微信技術乾貨文章,包括:IC製造、IC設計、人工智慧等將近500篇。建議收藏,慢慢閱讀。(以下內容為2019年及之前的內容,2020年內容正在整理中。。)IC大牛10多年的設計分享:數字典型電路知識結構地圖及代碼實現深度聊聊MOS管32GT/s PCIe 5.0,SOC晶片關鍵設計與挑戰關於華為海思,這篇文章值得一看
  • 無線充電技術的背後原理和知識,這篇文章講到點子上了
    無線充電技術的背後原理和知識,這篇文章講到點子上了 佚名 發表於 2017-12-23 07:47:00 每次要幫手機、電腦,或者其他各種電器充電時,總是要接一條充電線
  • MEMS的應用趨勢與市場剖析
    印表機噴墨頭是最顯著的例子,目前每年有數億個MEMS器件銷售到印表機的市場上,是出貨量最大的MEMS產品,這也讓HP始終居於MEMS出貨量的龍頭地位。 另一個成功的應用領域則是將MEMS器件用於顯示設備的市場。
  • MEMS陀螺儀工作原理及創新應用
    這一情況也發生在了蘋果CEO賈伯斯的身上。在2010年6月iPhone 4的發布會上,賈伯斯親自演示了陀螺儀帶來的偵測出物體水平方向旋轉的創新應用—這一應用是單獨基於其他運動傳感器無法實現的。因此,通過了解陀螺儀的工作原理,我們可以切身體會到任天堂和蘋果對陀螺儀曾經的企盼,而且也可以幫助國內的消費電子終端廠商巧妙地應用該器件以實現多樣化的創新應用。