PCB設計為什麼一般控制50歐姆阻抗?

2020-12-25 凡億教育

阻抗是什麼?PCB設計中阻抗為什麼要控制在50歐姆?下面小編就帶大家來學習一下阻抗的知識。

阻抗:在具有電阻、電感和的電路裡,對電路中的電流所起的阻礙作用叫做阻抗。它常用Z表示,是一個複數,實部稱為電阻,虛部稱為電抗。

阻抗的單位是歐姆。

做PCB設計過程中,在走線之前,一般我們會對自己要進行設計的項目進行疊層,根據厚度、基材、層數等信息進行計算阻抗,計算完後一般可得到如下圖示內容。

圖1 疊層信息圖示

從上圖可以看出,設計上面的單端網絡一般都是50歐姆來管控,那很多人就會問,為什麼要求按照50歐姆來管控而不是25歐姆或者80歐姆?

首先,默認選擇用50歐姆,而且業內大家都接受這個值,一般來說,肯定是由某個公認的機構制訂了某個標準,大家是按標準進行設計的。電子技術有很大一部分是來源於軍隊,首先技術是使用於軍用,慢慢的由軍用轉為民用。在微波應用的初期,二次世界大戰期間,阻抗的選擇完全依賴於使用的需要,沒有一個標準值。隨著技術的進步,需要給出阻抗標準,以便在經濟性和方便性上取得平衡。在美國,最多使用的導管是由現有的標尺竿和水管連接成的,51.5歐姆十分常見,但看到和用到的適配器、轉換器又是50-51.5歐姆;為聯合陸軍和海軍解決這些問題,一個名為JAN的組織成立了(後來的DESC組織),由MIL特別發展的,綜合考慮後最終選擇了50歐姆,由此相關的導管被製造出來,並由此轉化為各種線纜的標準。此時歐洲標準是60歐姆,不久以後,在象Hewlett-Packard這樣在業界佔統治地位的公司的影響下,歐洲人也被迫改變了,所以50歐姆最終成為業界的一個標準沿襲下來,也就變成約定俗成了,而和各種線纜連接的PCB,為了阻抗的匹配,最終也是按照50歐姆阻抗標準來要求了。

其次,一般標準的制定是會基於PCB生產工藝和設計性能、可行性的綜合考量。

從PCB生產加工工藝角度出發,以現有的大部分PCB生產廠商的設備考慮,生產50歐姆阻抗的PCB是比較容易實現的。從阻抗計算過程可知,過低的阻抗需要較寬的線寬以及薄介質或較大的介電常數,這對於目前高密板來說空間上比較難滿足;過高的阻抗又需要較細的線寬及較厚的介質或較小的介電常數,不利於EMI及串擾的抑制,同時對於多層板及從量產的角度來講加工的可靠性會比較差。控制50歐姆阻抗在使用常用板材(FR4等)、常用芯板的環境下,生產常用的板厚的產品(如1mm、1.2mm等),可設計常見的線寬(4~10mil),這樣板廠加工起來是非常方便的,對其加工使用的設備要求也不是很高。

從PCB設計方面考慮,50歐姆也是綜合考慮之後選擇。從PCB走線的性能來說,一般阻抗低比較好,對一個給定線寬的傳輸線,和平面距離越近,相應的EMI會減小,串擾也會因此減小。但從信號全路徑的角度看,還需要考慮最關鍵的一個因素,那就是晶片的驅動能力,在早期大多數晶片驅動不了阻抗小於50歐姆的傳輸線,而更高阻抗的傳輸線由於實現起來不便,所以折中採用50歐姆阻抗。

所以一般選擇50歐姆作為常規時單端信號控制阻抗的默認值。

好啦,以上就是凡億為大家整理的pcb設計中關於阻抗的知識,凡億PCB將持續為你帶來更多精彩的PCB設計專業知識。

相關焦點

  • 為什麼PCB上的單端阻抗控制50歐姆
    很多剛接觸阻抗的人都會有這個疑問,為什麼常見的板內單端走線都是默認要求按照50歐姆來管控而不是40歐姆或者60歐姆?這是一個看似簡單但又不好回答的問題。
  • 為什麼PCB上單端阻抗控制50歐姆,為什麼常規是10%的偏差?
    很多剛接觸阻抗的人都會有這個疑問,為什麼常見的板內單端走線都是默認要求按照50歐姆來管控而不是40歐姆或者60歐姆?這是一個看似簡單但又不好回答的問題。為什麼說不好回答呢?01為什麼PCB上的單端阻抗控制50歐姆→點擊查看←很多剛接觸阻抗的人都會有這個疑問,為什麼常見的板內單端走線都是默認要求按照50歐姆來管控而不是40歐姆或者60歐姆?這是一個看似簡單但又不好回答的問題。
  • PCB阻抗控制
    需要進行阻抗控制的信號為:DDR的數據線,單端阻抗為50歐姆,走線層為TOP和L2、L3層,走線寬度為5mil。時鐘信號CLK和USB數據線,差分阻抗控制在100歐姆,走線層為L2、L3層,走線寬度為6mil,走線間距為6mil。
  • 為什麼50歐姆?
    做PCB設計過程中,在走線之前,一般我們會對自己要進行設計的項目進行疊層,根據厚度、基材、層數等信息進行計算阻抗,計算完後一般可得到如下圖示內容
  • RF中的阻抗匹配和50歐姆是怎麼來的?
    而對於帶有發射的電臺而言,50歐姆是很常見的,因為最大功率傳輸是我們考慮的主要因素,同時損耗也比較重要。這就是為什麼我們的對講機系統中,經常看到的都是50歐姆的參數指標。 如果說阻抗匹配到50歐姆,從數學上,是可以嚴格做到的,但是實際應用中的任何元件,線路,導線都存在損耗,而且設計的任何系統部件都存在一定的射頻帶寬,所以匹配到50歐姆,工程上只要保證所有的帶內頻點落在50歐姆附近即可。
  • pcb版圖的阻抗控制怎麼計算
    特性阻抗,體現在PCB板上,主要是通過疊層、線寬、線距。在PCB版圖布局完成以後,我們要對PCB板進行層疊設計,將PCB板按照一定的厚度疊好以後,根據層疊結構,通過SI9000這個軟體來進行阻抗線寬的計算,然後根據計算好的線寬來進行布線,即可達到控制特性阻抗的效果。
  • 阻抗板加工的阻抗控制
    在阻抗板加工處理中,如果有信號傳輸,則期望當信號從電源傳輸到接收機時,沒有任何反射,就可以傳輸到接收機而沒有任何反射,前提是能量損失小。要發生這種傳輸,電路中的阻抗必須等於發射機內部的阻抗,才能稱為「阻抗匹配」。
  • 為了信號完整性,如何控制PCB的控制走線阻抗?
    沒有阻抗控制的話,將引發相當大的信號反射和信號失真,導致設計失敗。常見的信號,如PCI總線、PCI-E總線、USB、乙太網、DDR內存、LVDS信號等,均需要進行阻抗控制。阻抗控制最終需要通過PCB設計實現,對PCB板工藝也提出更高要求,經過與PCB廠的溝通,並結合EDA軟體的使用,按照信號完整性要求去控制走線的阻抗。本文引用地址:http://www.eepw.com.cn/article/201807/389726.htm  不同的走線方式都是可以通過計算得到對應的阻抗值。
  • 如何計算阻抗及如何用TDR來測試PCB板的線路阻抗
    關於阻抗的話題已經說了這麼多,想必大家對於阻抗控制在pcb layout中的重要性已經有了一定的了解。俗話說的好,工欲善其事,必先利其器。要想板子利索的跑起來,傳輸線的阻抗計算肯定不能等閒而視之。阻抗系列第三部,終結曲來了……01如何計算阻抗(上)→點擊查看←在高速設計流程裡,疊層設計和阻抗計算就是萬裡長徵的第一步。
  • 僅僅只是簡單的阻抗控制嗎?
    但是之前客戶自己做了兩個版本,最終測試的阻抗都沒有達到要求,所以聯繫我們市場人員重新設計。我們的市場也是「身經百戰」了,想著不就是100Ω阻抗控制嗎?手到擒來,說幹就幹開始設計。快要投板的時候,不知道怎麼總是感覺不對,找高速先生諮詢。高速先生團隊在了解了客戶的詳細需求之後,確定了仿真方案。
  • PCB板的特性阻抗與特性阻抗控制
    4、 導線寬度對特性阻抗Z0的影響  Z0 隨著線寬W變窄而迅速增加,因此,要控制Z0 ,必須嚴 格控制線寬。目前,大多數高頻線路和高速數字線路的信號傳輸線寬 W為0.10或0.13mm。傳統上,線寬控制偏差為±20%。
  • 基於一種信號耦合來實現阻抗控制的設計方案
    打開APP 基於一種信號耦合來實現阻抗控制的設計方案 李義君 丁影 發表於 2019-11-28 17:10:44 一般對於控制阻抗的方法是控制寄生參數。
  • 影響PCB特性阻抗的因素有哪些?
    其壓合後的厚度與壓機的平整性、壓板的程序有關;對所使用的任何一種板材,要取得其可生產的介質層厚度,利於設計計算,而工程設計、壓板控制、來料公差是介質厚度控制的關鍵。第二個:線寬,增加線寬,可減小阻抗,減小線寬可增大阻抗。
  • 這樣講解「特性阻抗」、「阻抗匹配」,不信你不懂~
    人認識事物總是有一個過程,一般都是從具體到抽象。認識特性阻抗也是一樣的,在我們認識特性阻抗之前,先認識跟特性阻抗比較相關的一個物理量—電阻。
  • 阻抗匹配電路的作用,阻抗匹配的理想模型
    阻抗匹配電路的作用,阻抗匹配的理想模型 李倩 發表於 2018-08-29 10:27:29 一、 阻抗匹配電路的作用 阻抗控制在硬體設計中是一個比較重要的環節
  • 射頻變壓器阻抗不是常用50歐姆,該怎樣高精度測試?
    對於單端阻抗為50 Ohm、差分阻抗為100 Ohm的變壓器,可以直接在矢網的虛擬差分測試模式下測試,因為默認情況下,失網在虛擬差分模式下的單端阻抗和差分阻抗是與待測射頻變壓器匹配的。但是對於單端阻抗不是50 Ohm的變壓器,如何有效測試其性能呢?如果射頻變壓器的單端阻抗不是50 Ohm,需要考慮待測件與矢網之間的埠匹配。
  • CAN網絡的特性阻抗及終端阻抗
    CAN網絡開始的,如下圖是一個CAN的網絡的基本模型,兩端是120歐姆的電阻,  can網絡用的線材的特性阻抗是也是120歐姆的,下面有幾個問題分別拆分來說明。  1.為什麼要用120歐姆的終端阻抗?  首先CAN網絡裡用到傳輸線,線材的特性阻抗為120歐姆。
  • PCB設計中有關阻抗匹配知識簡析
    阻抗匹配是信號傳輸過程中信源內阻抗和負載阻抗之間特定的配合關係。也是一件器材的輸出阻抗和所連接的負載阻抗之間所應滿足的某種關係,以免接上負載後對器材本身的工作狀態產生明顯的影響。主要用於使傳輸線上所有高頻的微波信號皆能傳至負載點上,並不會有信號反射回來源點,進而提高了能源效益。本文我們將介紹PCB設計知識中有關阻抗匹配的一些研究。
  • 阻抗計算有哪些技巧?看完本文就知道了!
    阻抗計算(以一個八層板為例)下面以如圖1-1所示的八層板為例來介紹下相關阻抗的計算方法圖1-1  八層板(1)表層(Top/Bot層)參考第二層,單端阻抗選用CoatedMicrostrip 1B模型,單端50歐姆阻抗計算方法如圖1-2所示,最後得到表層50歐姆單端線寬為6mil。
  • PCB設計之電流與線寬的關係
    關於pcb線寬和電流的經驗公式,關係表和軟體網上都很多,本文把網上的整理了一下,旨在給廣大工程師在設計PCB板的時候提供方便。最後再次說明:電流承載值數據表只是一個絕對參考數值,在不做大電流設計時,按表中所提供的數據再增加10%量就絕對可以滿足設計要求。而在一般單面板設計中,以銅厚35um,基本可以於1比1的比例進行設計,也就是1A的電流可以以1mm的導線來設計,也就能夠滿足要求了(以溫度105度計算)。三、PCB設計時銅箔厚度,走線寬度和電流的關係信號的電流強度。