全國高中數學聯賽競賽概況
自2010年起,全國高中數學聯賽試題新規則如下:
聯賽分為一試、加試(即俗稱的「二試」)。各個省份自己組織的「初賽」、「初試」、「複賽」等等,都不是正式的全國聯賽名稱及程序。一試和加試均在每年9月中旬的周日舉行。
一試
考試時間為上午8:00-9:20,共80分鐘。試題分填空題和解答題兩部分,滿分120分。其中填空題8道,每題8分;解答題3道,分別為16分、20分、20分。(2009年的舊規則和2008年之前的舊規則略去。)
加試(二試)
考試時間為9:40-12:10,共150分鐘。試題為四道解答題,前兩道每題40分,後兩道每題50分,滿分180分。試題內容涵蓋平面幾何、代數、數論、組合數學等。(2009年的舊規則和2008年之前的舊規則略去。)
依據考試結果評選出各省級賽區級一、二、三等獎。 其中一等獎由各省負責閱卷評分,然後將一等獎的考卷寄送到主辦方(當年的主辦方),由主辦方複評,最終由主管單位(中國科協)負責最終的評定並公布。二、三等獎由各個省自己決定。各省、市、自治區賽區一等獎排名靠前的同學可參加中國數學奧林匹克(CMO)。
考試範圍全國高中數學聯賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識範圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試在知識方面有所拓展,增加如下知識點的考察。
1.平面幾何
基本要求:掌握初中競賽大綱所確定的所有內容。
補充要求:面積和面積方法。
幾個重要定理:梅涅勞斯定理、塞瓦定理、託勒密定理、西姆松定理。
幾個重要的極值:到三角形三頂點距離之和最小的點——費馬點。到三角形三頂點距離的平方和最小的點——重心。三角形內到三邊距離之積最大的點——重心。
幾何不等式。
簡單的等周問題。了解下述定理:
在周長一定的n邊形的集合中,正n邊形的面積最大。
在周長一定的簡單閉曲線的集合中,圓的面積最大。
在面積一定的n邊形的集合中,正n邊形的周長最小。
在面積一定的簡單閉曲線的集合中,圓的周長最小。
幾何中的運動:反射、平移、旋轉。
複數方法、向量方法*。
平面凸集、凸包及應用。
2.代數
在一試大綱的基礎上另外要求的內容:
周期函數與周期,帶絕對值的函數的圖像。
三倍角公式,三角形的一些簡單的恆等式,三角不等式。
第二數學歸納法。
遞歸,一階、二階遞歸,特徵方程法。
函數迭代,求n次迭代*,簡單的函數方程*。
n個變元的平均不等式,柯西不等式,排序不等式及應用。
複數的指數形式,歐拉公式,棣美弗定理,單位根,單位根的應用。
圓排列,有重複的排列與組合。簡單的組合恆等式。
一元n次方程(多項式)根的個數,根與係數的關係,實係數方程虛根成對定理。
簡單的初等數論問題,除初中大綱中斯包括的內容外,還應包括無窮遞降法,同餘,歐幾裡得除法,非負最小完全剩餘類,高斯函數[x],費馬小定理,歐拉函數*,孫子定理*,格點及其性質。
3.立體幾何
多面角,多面角的性質。三面角、直三面角的基本性質。
正多面體,歐拉定理。
體積證法。
截面,會作截面、表面展開圖。
4.平面解析幾何
直線的法線式,直線的極坐標方程,直線束及其應用。
二元一次不等式表示的區域。
三角形的面積公式。
圓錐曲線的切線和法線。
圓的冪和根軸。
5.其它
抽屜原理。
容斥原理。
極端原理。
集合的劃分。
覆蓋。
註:全國高中數學聯賽的二試命題的基本原則是向國際數學奧林匹克靠攏,總的精神是比高中數學大綱的要求略有提高,在知識方面略有擴展,適當增加一些課堂上沒有的內容作為課外活動或奧校的講授內容。
對教師和教練員的要求是逐步地掌握以上所列內容,並根據學生的具體情況適當地講授。
此次收集整理了15套高中數學聯賽模擬試卷以及答案,試卷的題型與試題的難度與真實的全國聯賽相一致,同學們可以針對性地進行競賽模擬訓練以及自測。
(需要電子版的請看文末,本文僅展示專題講座這部分內容)
以下展示講義文檔的部分內容截圖:
想獲得這一份高中聯賽模擬試題以及答案,從文章返回公眾號聊天頁面,回復「03」。