說到基礎教育哪家強,必定有網友搬出那句歪理名言:中國教育看江蘇,江蘇教育看南通!
從近幾十年的教育歷史看,江蘇的教育事業非常的發達,江蘇高考試卷也是全國最難的,無數普通學生避之而不及,卻被全國各地的超級學霸拿來練習。
那麼,江蘇的中考呢?是否如高考卷那般讓無數普通學生聞風喪膽?
下面,我們從近幾年的南通市中考數學幾何壓軸題出發,一探中考數學難易的究竟!
2016年第27題
考點:中位線、相似、勾股定理
【吐槽】單從題目來看,難度不算特別大!不過前26道題也有難題啊!寫到第27題時,考生應該耗費了許多元氣!
2017年第27題
我們知道,三角形的內心是三條角平分線的交點,過三角形內心的一條直線與兩邊相交,兩交點之間的線段把這個三角形分成兩個圖形.若有一個圖形與原三角形相似,則把這條線段叫做這個三角形的「內似線」.
(1)等邊三角形「內似線」的條數為______;
(2)如圖,△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求證:BD是△ABC的「內似線」;
(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分別在邊AC、BC上,且EF是△ABC的「內似線」,求EF的長.
【吐槽】新定義題型的難度在於能否正確理解新定義要表達的意思,還好這一次的新定義概念相對簡單。
2018年第28題
【分析】(1)利用平角求出∠APD=60°,即可得出結論;
(2)先求出∠COD=45°,進而判斷出點D,P,E在同一條直線上,求出∠CED,即可得出結論;
(3)①當點P在半徑OA上時,利用(2)的方法求出∠CFD=60°,∠COD=120°,利用三角函數求出CD,進而求出DF,再用勾股定理求出OH,即可求出OP即可得出結論;
②當點P在半徑OB上時,同①方法求出BP=3,即可得出結論.
【吐槽】此題是圓的綜合題,主要考查了垂徑定理,三點共線,銳角三角函數,勾股定理,新定義,正確作出輔助線是解本題的關鍵.不過「迴旋角」會讓功夫迷聯想到「迴旋踢」,太影響考試狀態了!
2019年第27題
解析:本題考查了幾何綜合題.(1)利用垂直平分線的性質證明AE=CE,AF=CF,然後再利用對稱的性質和平行的性質,證得AE=AF,即可證得四條邊都相等;
(2)△PEF中,EF長是定值,因此本題考查的實際上是PE+PF的最小值,我們作E關於CD的對稱點為'E,此時FE'最小;
(3)利用45°構造等腰直角三角形,設BP交AC於點Q,作BN⊥AC於點N.這時△BQN為等腰直角三角形,△ABN與△ABC相似,先在Rt△ABN中求出BN和AN的長,然後求出AQ、CQ的長,再根據△BAQ與△PCQ相似,求出PC的長.
【吐槽】動手畫圖的能力如果不行,遲遲不肯下筆的話,這道題想要寫對一半以上,太難了!
看完這幾道江蘇省南通市的歷年中考數學幾何壓軸題,感覺如何?
單從一道題目的難度來說,確實不算特別大!但是,整份試卷的難度,又豈是外地人能想像得到的!
題量多,時間少,難題多,計算量大等等一系列問題,放在任何一個考場,都是虐哭眾多考生的存在啊!
畢業生們,還是好好的複習功課,在最後的一個多月裡挑戰自己,努力成為那一匹黑馬吧!