摘要:能源危機與碳排放已成為全球化問題,尤其在冬季採暖能耗巨大的我國嚴寒地區較為嚴重。此外,包括大空間建築在內的公共建築消耗大量能源,從而引起廣泛關注。然而,綠色建築性能評價時常遇到複雜的權衡問題。多目標優化方法可以有效解決這一問題,幫助設計師獲得更多可行方案,並在設計決策方面存在較大優勢。與此同時,BIM技術的發展使整合幾何建模、性能模擬工具及優化算法成為可能,並在建築全生命周期信息管理上較為突出。本文基於Revit-Dynamo這一參數化平臺,旨在提出一種基於BIM的建築多綠色性能目標優化方法,在使採光性能最優化的同時降低能耗與碳排放水平。文章詳細闡述了多目標優化設計流程,並通過案例研究佐證其適用性。實驗結果表明,建築綠色性能隨著迭代次數的增加而逐步提升,進而證明該方法在提升嚴寒地區大空間建築綠色性能方面的有效性。
關鍵詞: BIM;多性能目標優化;採光;能耗;碳排放;嚴寒地區
1 背景概述
隨著化石燃料的短缺和全球變暖的威脅,能源消耗和碳排放引起了廣泛的關注,特別是在建築業。鑑於冬季的寒冷氣候,我國嚴寒地區建築與其他地區相比,採暖能耗和二氧化碳排放量十分可觀。根據最新數據顯示,我國2016年度建築碳排放總量多達19.6億噸,佔國內碳排放總量的19%。採暖地區的平均碳排放量為2.66噸/人,是非採暖區碳排放量的2倍。對嚴寒地區來說,以黑龍江省為例,其碳排放密度為56 kgCO2/m2,多於北方其餘採暖區18 kgCO2/m2。由此可見,嚴寒地區與我國其餘地區相比,節能減排任務迫在眉睫。與此同時,包括大空間建築在內的公共建築碳排放密度水平同樣較高,約為我國其他類型建築的2.09倍。因此,探討嚴寒地區大空間建築的綠色性能具有重大意義。大空間建築的綠色性能主要包括採光性能、建築能耗與建築碳排放。值得關注的是,採光性能提升的同時勢必會引起能耗與碳排放量的增加。為有效解決這一複雜的決策權衡問題,筆者引入多目標優化算法,在初步創作方案的基礎上求得採光、能耗與碳排放性能目標均優的設計方案。隨著計算性設計工具的蓬勃發展,BIM逐漸走上建築設計的舞臺,其在建築全生命周期信息管理上存在顯著優勢。同時,BIM的參數化編程技術已趨於成熟,可有效整合幾何建模、性能模擬工具及優化算法,為嚴寒地區大空間建築的綠色性能多目標優化設計提供契機。在此背景下,本文提出一種基於BIM平臺的綠色性能導向設計決策方法,優化嚴寒地區大空間建築的採光、能耗與碳排放性能。
2 綠色性能導向的優化設計流程
本方法工作流程引入遺傳優化算法,以獲得優化問題的性能目標最優值與對應的建築形體決策變量數值。整個工作流程包括確定優化目標、決策變量選擇、參數化建模模擬與多目標優化四個子流程。在第一個子流程中中,需根據嚴寒地區氣候特徵及可選擇的模擬引擎設定採光、能耗與碳排放為優化性能目標。隨後,應根據與優化目標的關聯及形態改變可能性選擇決策變量,即建築形體要素。在此條件下,優化目標和決策變量得以集成到建築信息模型中,進而進入參數模擬建模子流程。在這一子流程中,BIM信息模型整合了兩類信息,分別為環境信息與材料屬性信息。環境信息包括地理位置信息與氣象信息數據。材料屬性信息可以劃分為不透明材料(牆體、地面、屋面等)與透明材料(窗)。整合了信息的BIM模型分別進入Radiance、Daysim模擬採光性能指標,進入Green Building Studio雲端模擬能耗與碳排放數據。在多目標優化子流程中,運用NSGA-II遺傳算法通過迭代計算來獲得最優方案。該子流程獲得的是與設置種群數量相同數量的一系列多樣化方案。設計師可在一系列方案集中選擇滿意的方案。
3 綠色性能導向的優化設計平臺
Dynamo是一款基於Revit軟體的可視化編程插件,通過連接電池節點與Python編程實現。該Revit-Dynamo多目標優化設計平臺由三個部分構成,分別是幾何建模、性能模擬與NSGA-II算法優化,如圖2所示。在幾何建模模塊中,可通過Dynamo參數化編程輕鬆實現創建建築構件、增加建築構造層次、修改尺寸與位置等功能。性能模擬模塊包含碳排放、能耗與採光模擬。碳排放與能耗模擬部分採用基於DOE-2.2的Green Building Studio雲計算,採光模擬引擎則為Radiance與Daysim. 通過調用Ladybug、Honeybee等程序包可溝通不同軟體之間的接口。NSGA-II算法優化模塊為使用者提供種群數量、目標數量、迭代次數等參數設置界面,最終得出非支配Pareto解集。在此平臺中,更新的數據均會反饋給BIM信息模型,從而改變模型的形態與屬性,進入下一次的模擬與優化過程。
4 綠色性能導向的優化設計目標
(1)DA
DA的概念由Reinhart和Walkenhorst在2001年正式提出。該指標以工作平面照度為依據,基於地域氣候,對採光進行動態評價。其概念為全年工作時間中僅靠自然採光即可達到最小照度要求的時間百分比,其中最常用的指標為300lx時的DA值,即DA300.
(2)UDI
UDI 2005年由Nabil與Mardaljevic提出,同樣是一種評價採光的動態指標。其定義為年度工作時間內平面照度100-2000lx的時間百分比。工作平面照度100lx以下代表採光不充分,2000lx以上會引起引起視覺不舒適的眩光,因此在計算UDI值時,100-2000lx被視為有效,即UDI100-2000.
(3)E
(4)EB
5 案例研究
(1)案例選取
本研究以嚴寒地區為地理研究範圍,故選擇哈爾濱市(126.54°E, 45.54°N)作為我國嚴寒地區城市的代表。該地區氣象數據可從EPW格式文件中獲得,進而輸入至模擬引擎中。其中與採光模擬計算相關的數據有太陽輻射與地表照度;能耗及碳排放模擬計算的數據包括溫度、溼度、風速與太陽輻射。研究選擇的案例為哈爾濱市雙城區一大空間建築,其地理區位與BIM信息化建模過程如圖3-4所示。
(2)決策變量選擇
建築形體決策變量的選擇與優化結果密切相關,從而形成決策變量與優化目標之間的映射關係。因此,所選建築形態決策變量需直接影響建築採光、能耗與碳排放性能。建築最終選取一層進深、二層開間與三類窗高度為決策變量進行優化,如圖5所示。五個變量的取值範圍分別為21-24.9m、62.4-66.3m、600-3600mm、600-2100mm、600-1800mm.
(3)優化參數設置
優化前需對建築材料的光學屬性、熱工物理屬性及優化算法參數進行設定。材料光學屬性需考慮不透光材料的反射率與透光材料的透射率,具體參數如表1所示。熱工物理屬性由構造層厚度、導熱係數、材料密度、比熱容、總厚度與總熱阻構成,具體參數詳見表2。優化算法參數包括精英率、突變概率、交叉概率、突變分布指數、交叉分布指數、種群數量六項參數,如表3所示。
6 結果分析
(1)非支配解演進過程分析
如圖6所示,在三維坐標系中,顏色最深的為最終的迭代運算結果,即第50代。第30代、15代、3代也依次置於圖中,顏色由深至淺。可以看到,隨著迭代次數的增加,解的分布逐漸由分散變為聚攏,且逐漸逼近坐標軸。
為進一步探索非支配解的演進過程,筆者選取DA與EB兩個指標用於分析。如圖7-a所示,第3代的解分布較為分散,且多數解的建築綠色性能水平較差。隨著優化過程的推進,解分布更加集中,逐漸形成清晰的Pareto前緣,且採光性能更優、碳排放量更少的解數量逐漸增加,如圖7-b、7-c、7-d所示。
圖8顯示了四個目標的最優與最劣性能值。可以看到,四個目標的最優解均來自第50代的非支配解,而最劣解均來自前代的支配解。因此可以充分證明,運用遺傳優化算法進行嚴寒地區大空間建築的數位化節能設計在綠色性能水平提升方面行之有效。
(2)多綠色性能權衡能力與設計可能性探索能力
運用基於BIM的建築多綠色性能目標優化方法最終篩選出的綜合最優方案對四項性能目標的權衡較好,且各單項性能最優方案也呈現出較好的均衡性,如圖9所示。隨後,為驗證該方法權衡多綠色性能與設計可能性的探索能力,筆者應用SOM神經網絡對全部設計可能性進行聚類,探索了100類設計可能中的50類,說明集成工具平臺具有權衡多綠色性能與設計可能性的探索能力(圖10)。
(3)建築綠色性能改善程度比較
分析實驗得出的能耗、碳排放、DA、UDI單項性能和綜合性能相對最優方案,結果表明:運用基於BIM的建築多綠色性能目標優化方法所得綜合方案相比既有方案在多項性能上均有提升(圖11)。
(4)多綠色性能權衡與決策
優化過程所得方案可供設計師在多個綠色性能目標中作出取捨,但大量的方案及目標之間的複雜關係使決策依然不夠方便快捷。由於DA超過50%左右時可以認為空間採光良好,所以筆者選取DA值為50%作為邊界條件。如圖12所示,應用SOM神經網絡進行聚類,根據邊界條件可選出5組待選方案,其性能目標值如表4所示。通過權衡,最終確定方案E為性能相對最優方案,如圖13所示。
7 結語
我國嚴寒地區建築由於氣候原因,冬季能耗與碳排放量巨大。而大空間建築由於其體積較大,層高較高而消耗大量能源。因此,探討嚴寒地區大空間建築的節能減排問題具有重大的社會意義。然而在降低能耗與碳排放量的同時,嚴寒地區大空間建築的採光性能會因之減弱。為解決這一問題,本文基於BIM平臺提出了一種數位化節能設計方法。通過案例研究表明,該方法在嚴寒地區大空間建築的綜合性能提升方面較為有效,並為BIM平臺的的嚴寒地區大空間建築綜合信息集成一體化打下一定的研究基礎。
參考文獻
[1] 清華大學建築節能研究中心.中國建築節能年度發展研究報告2018.北京:中國建築工業出版社,2018.
[2] C.H. Hansen, O. Gudmundsson, N. Detlefsen, Cost efficiency of district heating for low energy buildings of the future, Energy, Volume 177, 2019, 77-86.
[3] Kyriaki Foteinaki, Rongling Li, Alfred Heller, Carsten Rode, Heating system energy flexibility of low-energy residential buildings, Energy and Buildings, Volume 180, 2018, 95-108.
[4] Francesco Reda, Zarrin Fatima, Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries, Applied Energy, Volume 237, 2019, 598-617.
[5] Lorenzo Belussi, Benedetta Barozzi, Alice Bellazzi, Ludovico Danza, Anna Devitofrancesco, Carlo Fanciulli, Matteo Ghellere, Giulia Guazzi, Italo Meroni, Francesco Salamone, Fabio Scamoni, Chiara Scrosati, A review of performance of zero energy buildings and energy efficiency solutions, Journal of Building Engineering, Volume 25, 2019, 100772.
[6] Jaehun Sim, Jehean Sim, The effect of new carbon emission reduction targets on an apartment building in South Korea, Energy and Buildings, Volume 127,2016, 637-647.
[7] Shreshth Nagpal, Jared Hanson, Christoph Reinhart, A framework for using calibrated campus-wide building energy models for continuous planning and greenhouse gas emissions reduction tracking, Applied Energy, Volume 241, 2019, 82-97.
[8] Yue Teng, Kaijian Li, Wei Pan, Thomas Ng, Reducing building life cycle carbon emissions through prefabrication: Evidence from and gaps in empirical studies, Building and Environment, Volume 132, 2018, 125-136.
[9] Ting Luo, Yongtao Tan, Craig Langston, Xiaolong Xue, Mapping the knowledge roadmap of low carbon building: A scientometric analysis, Energy and Buildings, Volume 194, 2019, 163-176.
[ 0] Seok-Gil Yong, Jong-Hyun Kim, Yuseong Gim, Jinho Kim, Jinkyun Cho, Hiki Hong, Young-Jin Baik, Junemo Koo, Impacts of building envelope design factors upon energy loads and their optimization in US standard climate zones using experimental design, Energy and Buildings, Volume 141, 2017, 1-15.
[1 ] Ming-Der Yang, Min-Der Lin, Yu-Hao Lin, Kang-Ting Tsai, Multiobjective optimization design of green building envelope material using a non-dominated sorting genetic algorithm, Applied Thermal Engineering, Volume 111, 2017, 1255-1264.
[ 2] Pengyuan Shen, William Braham, Yunkyu Yi, Eric Eaton, Rapid multi-objective optimization with multi-year future weather condition and decision-making support for building retrofit, Energy, Volume 172, 2019, 892-912.
[ 3] Ayca Kirimtat, Ondrej Krejcar, Berk Ekici, M. Fatih Tasgetiren, Multi-objective energy and daylight optimization of amorphous shading devices in buildings, Solar Energy, Volume 185, 2019, 100-111.
[ 4] Fabrizio Ascione, Nicola Bianco, Gerardo Maria Mauro, Giuseppe Peter Vanoli, A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin, Applied Energy, Volume 241, 2019, 331-361.
[ 5] Ehsan Kamel, Ali M. Memari, Review of BIM's application in energy simulation: Tools, issues, and solutions, Automation in Construction, Volume 97, 2019, 164-180.
[ 6] Rodger E. Edwards, Eric Lou, Anas Bataw, Syahrul Nizam Kamaruzzaman, Christopher Johnson, Sustainability-led design: Feasibility of incorporating whole-life cycle energy assessment into BIM for refurbishment projects, Journal of Building Engineering, Volume 24, 2019, 100697.
[ 7] Vincent J.L. Gan, M. Deng, K.T. Tse, C.M. Chan, Irene M.C. Lo, Jack C.P. Cheng, Holistic BIM framework for sustainable low carbon design of high-rise buildings, Journal of Cleaner Production, Volume 195, 2018, 1091-1104.
[ 8] U. Vitiello, V. Ciotta, A. Salzano, D. Asprone, G. Manfredi, E. Cosenza, BIM-based approach for the cost-optimization of seismic retrofit strategies on existing buildings, Automation in Construction, Volume 98, 2019, 90-101.
[ 9] Worawan Natephra, Nobuyoshi Yabuki, Tomohiro Fukuda, Optimizing the evaluation of building envelope design for thermal performance using a BIM-based overall thermal transfer value calculation, Building and Environment, Volume 136, 2018, 128-145.
[20] Mohammad Rahmani Asl, Saied Zarrinmehr, Michael Bergin, Wei Yan, BPOpt: A framework for BIM-based performance optimization, Energy and Buildings, Volume 108, 2015, 401-412.
[2 ] Mohammad Rahmani Asl, Michael Bergin, Adam Menter, Wei Yan, BIM-based Parametric Building Energy Performance Multi-Objective Optimization, 32nd International Conference on Education and Research in Computer Aided Architectural Design in Europe, 2014: 455-464.
[22] Jungsik Choi, Jihye Shin, Minchan Kim, Inhan Kim, Development of openBIM-based energy analysis software to improve the interoperability of energy performance assessment, Automation in Construction, Volume 72, Part 1, 2016, 52-64.
[23] Youngjib Ham, Mani Golparvar-Fard, Mapping actual thermal properties to building elements in gbXML-based BIM for reliable building energy performance modeling, Automation in Construction, Volume 49, Part B, 2015, 214-224.
[24] Ahmad Eltaweel, Yuehong Su, Controlling venetian blinds based on parametric design; via implementing Grasshopper’s plugins: A case study of an office building in Cairo, Energy and Buildings, Volume 139, 2017, 31-43.
[25] Wei Yu, Baizhan Li, Hongyuan Jia, Ming Zhang, Di Wang, Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design, Energy and Buildings, Volume 88, 2015, 135-143.
[26] Yunsong Han, Hong Yu, Cheng Sun, Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions, sustainability, Volume 9, 2017, 2353.
[27] Binghui Si, Jianguo Wang, Xinyue Yao, Xing Shi, Xing Jin, Xin Zhou, Multi-objective optimization design of a complex building based on an artificial neural network and performance evaluation of algorithms, Advanced Engineering Informatics, Volume 40, 2019, 93-109.
[28] 孫澄,韓昀松.光熱性能考慮下的嚴寒地區辦公建築形態節能設計研究[J].建築學報,2016(02):38-42.
[29] Yujie Lu, Zhilei Wu, Ruidong Chang, Yongkui Li, Building Information Modeling (BIM) for green buildings: A critical review and future directions, Automation in Construction, Volume 83, 2017, 134-148.
[30] Jong Bum Kim, WoonSeong Jeong, Mark J. Clayton, Jeff S. Haberl, Wei Yan, Developing a physical BIM library for building thermal energy simulation, Automation in Construction, Volume 50, 2015, 16-28.
[3 ] Yun Kyu Yi, Building facade multi-objective optimization for daylight and aesthetical perception, Building and Environment, Volume 156, 2019, 178-190.
[32] Mitja Ko?ir, Nata?a Igli?, Roman Kuni?, Optimisation of heating, cooling and lighting energy performance of modular buildings in respect to location’s climatic specifics, Renewable Energy, Volume 129, Part A, 2018, 527-539.
[33] Christoph F. Reinhart, Oliver Walkenhorst, Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds, Energy and Buildings, Volume 33, Issue 7, 2001, 683-697.
[34] Christoph F. Reinhart, Jan Wienold, The daylighting dashboard – A simulation-based design analysis for daylit spaces, Building and Environment, Volume 46, Issue 2, 2011, 386-396.
[35] GB 50033-2013. Standard for Daylighting Design of Buildings; China Architecture & Building Press: Beijing, China, 2013; p. 8.
[36] Yu Bian, Yuan Ma, Analysis of daylight metrics of side-lit room in Canton, south China: A comparison between daylight autonomy and daylight factor, Energy and Buildings, Volume 138, 2017, 347-354.
[37] Nabil, A. Useful daylight illuminance: A new paradigm for assessing daylight in buildings. Light. Res. Technol. 2005, 37, 41–59.
[38] Azza Nabil, John Mardaljevic, Useful daylight illuminances: A replacement for daylight factors, Energy and Buildings, Volume 38, Issue 7, 2006, 905-913.
[39] Umberto Berardi, Hamid Khademi Anaraki, Analysis of the Impacts of Light Shelves on the Useful Daylight Illuminance in Office Buildings in Toronto, Energy Procedia, Volume 78, 2015, 1793-1798.
[40] 清華大學建築節能研究中心.中國建築節能年度發展研究報告2016.北京:中國建築工業出版社,2016.
[41] Drury B. Crawley. Which Weather Data Should You Use for Energy Simulations of Commercial Buildings?, ASHRAE Transactions, Vol. 104, Pt. 2, 1998, 498-515.
[42] Tarun Kumar Gupta, Khalid Raza, Chapter 7 - Optimization of ANN Architecture: A Review on Nature-Inspired Techniques, Editor(s): Nilanjan Dey, Surekha Borra, Amira S. Ashour, Fuqian Shi, Machine Learning in Bio-Signal Analysis and Diagnostic Imaging, Academic Press, 2019, 159-182.
[43] Guohui Feng, Dandan Chi, Xiaolong Xu, Baoyue Dou, Yixin Sun, Yao Fu, Study on the Influence of Window-wall Ratio on the Energy Consumption of Nearly Zero Energy Buildings, Procedia Engineering, Volume 205, 2017, 730-737.
[44] Peng Xue, Qian Li, Jingchao Xie, Mengjing Zhao, Jiaping Liu, Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements, Applied Energy, Volumes 233–234, 2019, 62-70.
[45] [46] Ehrgott, M. Vilfredo Pareto and multi-objective optimization. Doc. Math. 2012, 447–453.
[47]孫澄,韓昀松.綠色性能導向下的建築數位化節能設計理論研究[J].建築學報,2016(11):89-93.
(責編:劉揚、趙光霞)