1、非齊次線性方程組解的結構及通解;
2、齊次線性方程組的基礎解系、通解及解空間的概念,齊次線性方程組的基礎解系和通解的求法;
3、齊次線性方程組有非零解的充分必要條件,非齊次線性方程組有解的充分必要條件;
4、矩陣初等變換的概念,初等矩陣的性質,矩陣等價的概念,矩陣的秩的概念,用初等變換求矩陣的秩和逆矩陣;
5、向量、向量的線性組合與線性表示的概念;
6、用初等行變換求解線性方程組的方法;
7、基變換和坐標變換公式,過渡矩陣。(數一)
8、向量空間、子空間、基底、維數、坐標等概念;(數一)
9、向量組線性相關、線性無關的概念,向量組線性相關、線性無關的有關性質及判別法;
10、向量組的極大線性無關組和向量組的秩的概念和求解;
11、向量組等價的概念,矩陣的秩與其行(列)向量組的秩之間的關係;
矩陣的特徵值特徵向量與二次型相當於是求解線性方程組的應用,出題比較靈活,有些題目技巧性較強,複習起來也是比較有意思的一章。在考試中也是比較容易出大題的內容。
12、規範正交基、正交矩陣的概念以及它們的性質;
13、內積的概念,線性無關向量組正交規範化的施密特(Schmidt)方法;
14、矩陣的特徵值和特徵向量的概念及性質,求矩陣的特徵值和特徵向量;
15、實對稱矩陣的特徵值和特徵向量的性質;
16、相似矩陣的概念、性質,矩陣可相似對角化的充分必要條件,將矩陣化為相似對角矩陣的方法;
17、二次型及其矩陣表示,二次型秩的概念,合同變換與合同矩陣的概念,二次型的標準形、規範形的概念以及慣性定理;
18、正定二次型、正定矩陣的概念和判別法;
19、正交變換化二次型為標準形,配方法化二次型為標準形。
版權及免責聲明
① 凡本網註明"稿件來源:新東方"的所有文字、圖片和音視頻稿件,版權均屬新東方教育科技集團(含本網和新東方網) 所有,任何媒體、網站或個人未經本網協議授權不得轉載、連結、轉貼或以其他任何方式複製、發表。已經本網協議授權的媒體、網站,在下載使用時必須註明"稿件來源:新東方",違者本網將依法追究法律責任。
② 本網未註明"稿件來源:新東方"的文/圖等稿件均為轉載稿,本網轉載僅基於傳遞更多信息之目的,並不意味著贊同轉載稿的觀點或證實其內容的真實性。如其他媒體、網站或個人從本網下載使用,必須保留本網註明的"稿件來源",並自負版權等法律責任。如擅自篡改為"稿件來源:新東方",本網將依法追究法律責任。
③ 如本網轉載稿涉及版權等問題,請作者見稿後在兩周內速來電與新東方網聯繫,電話:010-60908555。