一、數據分析的基本思路
數據分析應該以業務場景為起始思考點,以業務決策作為終點。
1、明確思路
明確數據分析的目的以及思路是確保數據分析過程有效進行的首要條件。它作用的是可以為數據的收集、處理及分析提供清晰的指引方向。可以說思路是整個分析流程的起點。首先目的不明確則會導致方向性的錯誤。當明確目的後,就要建分析框架,把分析目的分解成若干個不同的分析要點,即如何具體開展數據分析,需要從哪幾個角度進行分析,採用哪些分析指標。只有明確了分析目的,分析框架才能跟著確定下來,最後還要確保分析框架的體系化,使分析更具有說服力。
2、收集數據
收集數據是按照確定的數據分析框架收集相關數據的過程,它為數據分析提供了素材和依據。這裡所說的數據包括第一手數據與第二手數據,第一手數據主要指可直接獲取的數據比如公司自己的業務資料庫中的業務數據,第二手數據主要指經過加工整理後得到的數據例如一些公開出版物或者第三方的數據網站。
3、處理數據
處理數據是指對收集到的數據進行加工整理,形成適合數據分析的樣式,它是數據分析前必不可少的階段。數據處理的基本目的是從大量的、雜亂無章、難以理解的數據中,抽取並推導出對解決問題有價值、有意義的數據。數據處理主要包括數據清洗、數據轉化、數據提取、數據計算等處理方法。
4、分析數據
分析數據是指用適當的分析方法及工具,對處理過的數據進行分析,提取有價值的信息,形成有效結論的過程。由於數據分析多是通過軟體來完成的,這就要求數據分析師不僅要掌握各種數據分析方法,還要熟悉數據分析軟體的操作。而數據挖掘其實是一種高級的數據分析方法,就是從大量的數據中挖掘出有用的信息,它是根據用戶的特定要求,從浩如煙海的數據中找出所需的信息,以滿足用戶的特定需求。
5、可視化
一般情況下,數據是通過表格和圖形的方式來呈現的,我們常說用圖表說話就是這個意思。常用的數據圖表包括餅圖、柱形圖、條形圖、折線圖、散點圖、雷達圖等,當然可以對這些圖表進一步整理加工,使之變為我們所需要的圖形,例如金字塔圖、矩陣圖、漏鬥圖等。大多數情況下,人們更願意接受圖形這種數據展現方式,因為它能更加有效直觀。
6、撰寫報告
撰寫數據分析報告其實是對整個數據分析過程的一個總結與呈現,通過清晰的結構和圖文並茂的展現方式去展具有建設意義的解決方案。
二、數據分析的基本方法
1、對比分析
時間維度上的同比和環比
不同人群之間的對比
不同類別之間的對比
對比法可以發現數據變化規律,使用頻繁,經常和其他方法搭配使用。
2、帕累託分析
帕累託法則,源於經典的二八法則,即百分之八十的問題是百分之二十的原因所造成的。帕累託圖在項目管理中主要用來找出產生大多數問題的關鍵原因,用來解決大多數問題。
在帕累託圖中,不同類別的數據根據其頻率降序排列的,並在同一張圖中畫出累積百分比圖。帕累託圖可以體現帕累託原則:數據的絕大部分存在於很少類別中,極少剩下的數據分散在大部分類別中。這兩組經常被稱為「至關重要的極少數」和「微不足道的大多數」。
3、聚類分析
聚類分析屬於探索性的數據分析方法。通常,我們利用聚類分析將看似無序的對象進行分組、歸類,以達到更好地理解研究對象的目的。聚類結果要求組內對象相似性較高,組間對象相似性較低。在用戶研究中,很多問題可以藉助聚類分析來解決,比如,網站的信息分類問題、網頁的點擊行為關聯性問題以及用戶分類問題等等。其中,用戶分類是最常見的情況。
圖表製作工具為DataFocus
除非註明,否則均為DataFocus企業大數據分析系統,讓數據分析像搜索一樣簡單原創文章,轉載必須以連結形式標明本文連結。