求助:x+y=y+x到底是不是方程?

2020-12-22 紅鼻子叔叔2018

翻開初中的課本,可以看到方程的定義是:含有未知數的等式。x+y=y+x既含有未知數,又是等式。我認為滿足定義的兩個條件,所以是方程。

但是有人提出反對意見,認為x+y=y+x不是方程。原因是等式可以分為三類:一類是恆等式,如n+2n=3n,n取任何值等式都成立;第二類是矛盾等式,如m-1=m,m取任何值等式都不成立;第三類是條件等式,如3x=12,只有當x=4時等式才成立,這才是方程。我覺得這個意見也有道理,因此對x+y=y+x是方程產生了動搖。

後來,看到一本參考書,明確指出x+y=y+x是恆等式,未知數的解是無限的,所以不是方程。因此,我又認為x+y=y+x不是方程。

可是不久,在同一本參考書上,我又遇到這樣一道題:解關於x的方程:ax+b=2x+1。書中說,當a=2,b=1時,方程有無數個解。可是,將a=2,b=1代入之後,不就變成了2x+1=2x+1嗎?按照之前的說法,像這種有無數個解的等式不是方程,可題幹中明明寫著「解關於x的方程」,不是自相矛盾嗎?這次,我徹底糊塗了!

現在,我已經被這個問題困擾了三天三夜。x+y=y+x到底是不是方程?我要奔潰了!!!

相關焦點

  • 已知x^2-y^2=xy,求(x+y)/(x-y)
    主要內容:介紹通過正比例換元、中值換元、三角換元以及二次方程求根公式等方法,計算代數式(x+y)/(x-y)在x^2-y^2=xy條件下具體值的步驟。思路二:二次方程求根公式法x^2-y^2=xy,y^2+xy-x^2=0,將方程看成y的二次方程,由求根公式得:y=(-1±√5)x/2,代入代數式得:代數式
  • 已知x^2-y^2=xy,求(x+y)/(x-y)的值
    主要內容:介紹通過正比例換元、中值換元、三角換元以及二次方程求根公式等方法,計算代數式(x+y)/(x-y)在x^2-y^2=xy條件下具體值的步驟。 思路二:二次方程求根公式法x^2-y^2=xy,y^2+xy-x^2=0,將方程看成y的二次方程,由求根公式得
  • 曲線方程y=e^(x+3y)圖像畫法
    ※.曲線方程的定義域曲線方程表達式為y=e^(x+3y),即y>0,且lny=x+3y,則:x=lny-3y.所以,當y=1/3時,F(y)有最大值,即:x=F(y)≤F(y)max=-(1+ln3)x≤-(1+ln3)/1≈-2.10即曲線方程的定義域為:(-∞,-2.10]。
  • 微分方程y〞+y=(sin2x+cos2x)e^2x怎麼解?
    微分方程的特徵方程為:r2+1=0,r1,2=±i,即該方程的齊次微分方程的通解為:y*=c1sinx+c2cosx>又因為λ+iw=2+2i,不是特徵方程的根,則設特解為:y1=(msin2x+ncos2x)e^2x;兩次求導得:y1'=(2mcos2x-2nsin2x)e^2x+2(msin2x+ncos2x)e^2x;
  • 微分方程y〞+y=(sin2x+cos2x)e^2x怎麼解?
    微分方程的特徵方程為:r2+1=0,r1,2=±i,即該方程的齊次微分方程的通解為:y*=c1sinx+c2cosx又因為λ+iw=2+2i,不是特徵方程的根,則設特解為:y1=(msin2x+ncos2x)e^2x;兩次
  • x^2+y^2=2,求x+y和xy的最值
    解:先求x+y的最值問題。思路一:設x+y=k,代入已知方程,得到關於x的一元二次方程,方程有實數根,則有判別式≥0,求得k的取值範圍。由x^2+y^2=2,設x=√2cost,y=√2sint,則:x+y=√2cost+√2sint=2(sint+π/4).
  • 計算與化簡:√(x/y+y/x+2)-√(x/y)-√(y/x)(x>0)
    題目計算與化簡:(5)√(x/y+y/x+2)-√(x/y)-√(y/x)(x>0)普通學生思路:因為x/y=[√(x/y)]^2;y/x=[√(y/x)]^2;2=2×√(x/y)·√(y/x);所以x/y+y/x+2=[√(x/y)]^2+2×√(x/y)·√(y/x)+[√(y/x)]^2
  • 求微分方程y''+y=(sin3x+cos3x)e^2x通解的方法
    本文主要內容,介紹求微分方程y''+y=(sin3x+cos3x)e^2x通解的方法。解:微分方程的特徵方程為:r2+1=0,r1,2=±i,即該方程的齊次微分方程的通解為:y*=c1sinx+c2cosx;
  • 已知2/x+1/y=1,求x+y的最大值的四種方法
    主要內容:通過替換、柯西不等式、二次方程判別式及多元函數最值法等,介紹x+y在條件2/x+1/y=1下最大值的計算步驟。方法一:「1」的代換x+y=(x+y)(2/x+1/y)=(2+1+x/y+2y/x)利用均值不等式,則有:x+y≥(2+1+2√2)。
  • y=f(x)與x=f(y)是同一個函數?
    y=f(x)與x=f(y)是同一個函數?請先關注再下單學習微積分有什麼用?調查顯示:這些領域都已經和它息息相關了!(見另一專欄《微積分從入門到精通第一關——心理關》)x是常量還是變量?函數的概念對於中學生和大學新生來說從來似乎都沒有弄明白過,x和y在他們的眼中依然是代表數字的字母或者是未知量。(啥,難道不是代表數字的字母嗎?估計不少人懵逼了)是的,很多人在很長時間都一直會把x和y看作是代表數字的「字母」,這個一點問題都沒有。
  • 已知x^3+y^3=1,求x+y的最大值
    3.y=x^(1/3),則其導數y』=(1/3)x^(-2/3)。1/k),x和y可以看成如下t的二次方程的兩個根:t^2-kt+(1/3)(k^2-1/k)=0 此時方程的判別式為:△=*[(1/√x)^2+(1/√y)^2]≥(x+y)^2,∴(x+y)^2≤(x^3+y^3)*(1/x+1/y),(x+y)^2≤(x+y)/xy
  • 求函數y=(x+1)(x+11)的導數y',y'',y'''
    主要內容:通過函數乘積的求導公式,以及函數和的求導公式求函數y=(x+1)(x+11)的一階、二階和三階導數。一、一階導數:函數乘積求導法。∵y=(x+1)(x+11),∴y'=(x+11)+(x+1),=x+11+x+1=2x+12;函數和求導法。
  • z=f(x^2-y^2,ln(x-y))求z對x,y的
    主要內容:本文介紹全微分法和直接法,求解抽象函數z=f(x^2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法:對函數z求全微分得:dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy,根據全微分與偏導數的關係,得:dz/dx=2xf1'+f2』/(x-y),dz/dy=-[2yf1'+f2』/(
  • 八年級數學:已知x+y與xy,如何求x與y的n次方和?
    一個題如果有好幾問,後面的問題往往需要用到前面的結論,故現在已知條件拓展了,除了知道x+y=2,xy=1,又增加了一個已知條件x^2+y^2=2.再仔細觀察上式,如果把等號右邊的x和y換成x^2和y^2,左邊就變成了x^4+y^4!,同樣的方法還可以求出x^8+y^8.那我們不妨先把(3)和(7)做出來。
  • 求y=√(x^2+1)+√(x-1)^2+1的最小值及x值
    主要內容:通過兩點間直線距離最短以及函數的導數,介紹求解根式和y=√(x^2+1)+√[(x-1)^2+1]最小值的步驟。主要公式:1.兩點間距離公式|AB|=√[(a1-b1)^2+(a2-b2)^2];2.冪函數導數公式:y=x^(1/2),則dy/dx=(1/2)x^(-1/2)。
  • 當x=1時,計算y=x^2+x+1的增量和微分
    主要內容:本文介紹二次函數y=x^2+x+1在x=1時,自變量增量△x分別在1、0.1、0.01情形下增量和微分得計算步驟。主要步驟方法:y=x^2+x+1,方程兩邊同時求微分,得:dy=(2x+1)dx,此時函數的增量△y為:△y=(x+△x)^2+(x+△x)+1-(x^2+x+1),即:△y=(2x+1)△x+(△x)^2.對於本題已知x=1,則:dy=3dx,△y=3△x+(△x)^2。
  • 分式微分方程(2x^3+3xy^2+x)/(3x^2y+2y^3-y)的通解
    本文主要內容,通過數學變形,並利用可分離變量方法求解分式微分方程dy/dx=(2x^3+3xy^2+x)/(3x^2y+2y^3-y)的通解。第一步:微分方程基本變形:dy/dx=(2x^3+3xy^2+x)/(3x^2y+2y^3-y),右邊分母分子分別提取公因式x,y,則:dy/dx=x(2x^2+3y^2+1)/y(3x^2+2y^2-1),
  • 你知道微分方程y′′=y的解法嗎?
    如下是一個看上去挺簡單的二階齊次線性微分方程,第一眼看上去是不是很有趣,不知道你是否接觸過。但解決起來卻需要一定的數學技巧,讓我們拭目以待吧。首先你需要添加和減去一些項稍微的化簡一下:如下圖讓Z=y′+ y,上述等式就變成如下樣式首要的解決方案是Z=Ce^x,這裡的C是一個常數,我們使用分離變量來驗證這一點於是得到如下結果
  • x^2/3+y^2/2+z^2/2=1,求x+y+z的取值範圍
    主要內容:通過柯西不等式、換元法及構造多元函數法,介紹x+y+z在滿足給定條件x^2/3+y^2/2+z^2/2=1下的取值範圍。 主要公式:1.柯西不等式:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2.2.sin(a+b)=sinacosb+cosasinb.
  • z=f(x^2-y^2,ln(x-y))求z對x,y的偏導數
    主要內容:本文介紹全微分法和直接法,求解抽象函數z=f(x^2-y^2,ln(x-y)對x,y的一階偏導數dz/dx和dz/dy的具體步驟和過程。全微分法:對函數z求全微分得:dz=f1'(2xdx-2ydy)+f2'(1dx-1dy)/(x-y),即:dz=[2xf1'+f2』/(x-y)]dx-[2yf1'+f2』/(x-y)dy,根據全微分與偏導數的關係,得:dz/dx=2xf1'+f2』/(x-y),dz/dy=-[2yf1'+f2』/(