哺乳動物轉錄組和翻譯組共進化
作者:
小柯機器人發布時間:2020/11/14 23:33:42
德國海德堡大學分子生物學中心(ZMBH)Henrik Kaessmann和Evgeny Leushkin研究組合作取得一項新突破。他們揭示哺乳動物中的轉錄組和翻譯組共同進化。這一研究成果於2020年11月11日發表在國際頂尖學術期刊《自然》雜誌上。
他們報告了使用5種哺乳動物(人、獼猴、小鼠、負鼠和鴨嘴獸)和一種鳥類(雞)的三個器官(大腦、肝臟和睪丸)的三個器官(大腦,肝臟和睪丸)的核糖體譜分析和匹配的RNA測序數據,分析了翻譯組和轉錄組的共同進化。他們的種內分析表明,翻譯調節在不同器官中廣泛存在,尤其是在睪丸的生精細胞類型中。基因表達的種間差異在翻譯組比轉錄組低約20%,這是由於表達層之間的廣泛緩衝,特別是保留了舊的、必需的和管家基因。翻譯上調極大平衡了性染色體進化過程中的總體劑量減少和精子發生過程中減數分裂性染色體失活的影響。
儘管總體上有緩衝作用,但某些基因在跨翻譯組上進化得更快,這可能表明表達的適應性改變。睪丸組織顯示出此類基因的最高部分。結合質譜蛋白質組學數據的進一步分析表明,轉錄組和翻譯組的共同進化反映在蛋白質組層。總之,他們的工作揭示了表達組之間的共進化模式和相關選擇力,並提供了一種了解它們在哺乳動物器官中相互作用的資源。
據介紹,基因表達程序定義了共享的和物種特有的表型,但是它們的進化在轉錄組之外仍未得到充分表徵。
附:英文原文
Title: Transcriptome and translatome co-evolution in mammals
Author: Zhong-Yi Wang, Evgeny Leushkin, Anglica Liechti, Svetlana Ovchinnikova, Katharina Minger, Thoomke Brning, Coralie Rummel, Frank Grtzner, Margarida Cardoso-Moreira, Peggy Janich, David Gatfield, Boubou Diagouraga, Bernard de Massy, Mark E. Gill, Antoine H. F. M. Peters, Simon Anders, Henrik Kaessmann
Issue&Volume: 2020-11-11
Abstract: Gene-expression programs define shared and species-specific phenotypes, but their evolution remains largely uncharacterized beyond the transcriptome layer1. Here we report an analysis of the co-evolution of translatomes and transcriptomes using ribosome-profiling and matched RNA-sequencing data for three organs (brain, liver and testis) in five mammals (human, macaque, mouse, opossum and platypus) and a bird (chicken). Our within-species analyses reveal that translational regulation is widespread in the different organs, in particular across the spermatogenic cell types of the testis. The between-species divergence in gene expression is around 20% lower at the translatome layer than at the transcriptome layer owing to extensive buffering between the expression layers, which especially preserved old, essential and housekeeping genes. Translational upregulation specifically counterbalanced global dosage reductions during the evolution of sex chromosomes and the effects of meiotic sex-chromosome inactivation during spermatogenesis. Despite the overall prevalence of buffering, some genes evolved faster at the translatome layer—potentially indicating adaptive changes in expression; testis tissue shows the highest fraction of such genes. Further analyses incorporating mass spectrometry proteomics data establish that the co-evolution of transcriptomes and translatomes is reflected at the proteome layer. Together, our work uncovers co-evolutionary patterns and associated selective forces across the expression layers, and provides a resource for understanding their interplay in mammalian organs. An analysis using ribosome-profiling and matched RNA-sequencing data for three organs across five mammalian species and a bird enables the comparison of translatomes and transcriptomes, revealing patterns of co-evolution of these two expression layers.
DOI: 10.1038/s41586-020-2899-z
Source: https://www.nature.com/articles/s41586-020-2899-z