12月17日,《美國科學院院報》(PNAS)在線發表了中科院上海生命科學研究院神經科學研究所姚海組的最新研究論文《去同步化腦狀態下快速視覺信息處理的級聯放大機制》。這項工作首次揭示了腦狀態依賴的快速信息處理的神經機制。
對外界環境做出快速反應是維繫動物生存的一項至關重要的能力,尤其是當動物遇到它的捕食者,需要快速逃離的時侯。人和動物在機警狀態下的反應速度加快。動物的警覺程度和腦內群體神經元的活動狀態密切相關。當動物高度清醒或機警時,群體神經元呈現出低幅度高頻率的活動模式,腦處於去同步化狀態;而當動物安靜或奢睡時, 群體神經元呈現出高幅度低頻率的活動模式,腦處於同步化狀態。
在這項工作中,姚海珊組的王旭東、陳成和張丁紅研究了V1神經元的反應起始時間與腦活動狀態的關係。他們發現,V1神經元的反應起始時間在去同步化狀態下比同步化狀態更短。為了深入研究反應起始時間提前的機制,他們使用在體膜片鉗技術測量了同一個V1神經元在兩種腦狀態下的靜息電導和視覺誘發電導,發現去同步化腦狀態下的電導更高。通過建立一個單神經元模型,他們發現單個V1神經元的電導增加不足以解釋實驗中測得的反應起始時間的提前程度。於是,他們運用多通道線性矽電極同時記錄了LGN和V1神經元的反應。研究發現,LGN神經元的反應起始時間也是在去同步化狀態下更短,但其提前程度比V1神經元要小。在V1,反應起始時間的提前程度從layer4到layer2/3到layer5逐級增加。由此可見,反應起始時間的提前程度沿著視覺信息傳遞的方向逐級積累,這可能是去同步化腦狀態引起大範圍膜電導增加導致的。
由於初級感覺皮層位於感覺運動通路的起始階段,該項研究揭示的級聯放大機制為理解動物在機警狀態時做出快速反應的神經生物學機制奠定了基礎。
該課題由王旭東、陳成及張丁紅在姚海珊研究員的指導下完成。這一工作得到了科技部「973」項目和神經科學國家重點實驗室資助。(生物谷Bioon.com)
生物谷推薦的英文摘要:
PNAS doi:10.1073/pnas.1316166111
Cumulative latency advance underlies fast visual processing in desynchronized brain state
Xu-dong Wanga,1, Cheng Chena,b,1, Dinghong Zhanga,b, and Haishan Yaoa,2
Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals.