2021考研高數必考知識點:無窮級數

2021-01-10 新東方網

  考研數學一高等數學部分佔比56%,考研數學二高等數學部分佔比786%、考研數學三高等數學部分佔比56%,所以複習衝刺階段考研生們要將大部分精力放在考點的複習上。

  無窮級數

  ①掌握級數的基本性質及其級數收斂的必要條件,掌握幾何級數與p級數的收斂性;掌握比值審斂法,會用正項級數的比較與根值審斂法。

  ②會用交錯級數的萊布尼茲定理,了解絕對收斂和條件收斂的概念及它們的關係。 ③會求冪級數的和函數以及數項級數的和,掌握冪級數收斂域的求法.

  ④掌握ex、sinx、cosx、ln(1+x),(1+x)α的馬克勞林展開式,會用它們將簡單函數作間接展開;會將定義在[-L,L]上的函數展開為傅立葉級數,會將定義在上的函數展開為正弦級數和餘弦函數。重點是數項級數的概念與性質,正項級數的審斂法,交錯級數及其審斂法,絕對收斂與條件收斂的概念。冪級數的收斂半徑、收斂區間的求法,將函數展成傅立葉級數。難點是求冪級數的和函數,將函數展成冪級數、傅立葉級數。 8、常微分方程

  ①了解微分方程及其解、階、通解、初始條件和特解等概念;掌握變量可分離方程及一階線性方程的解法。

  ②會用降階法解y(n)=f(x),y″=f(x,y),y″=f(y,y』)類的方程;理解線性微分方程解的性質和解的結構。

  ③掌握二階常係數齊次線性微分方程的解法,並會解某些高於二階的常係數齊次線性微分方程。

  ④會解包含兩個未知函數的一階常係數線性微分方程組。重點是微分方程的概念,變量可分離方程,一階線性微分方程及二階的常係數線性微分方程的解法。難點是由實際問題建立微分方程及確定定解條件。

版權及免責聲明

① 凡本網註明"稿件來源:新東方"的所有文字、圖片和音視頻稿件,版權均屬新東方教育科技集團(含本網和新東方網) 所有,任何媒體、網站或個人未經本網協議授權不得轉載、連結、轉貼或以其他任何方式複製、發表。已經本網協議授權的媒體、網站,在下載使用時必須註明"稿件來源:新東方",違者本網將依法追究法律責任。

② 本網未註明"稿件來源:新東方"的文/圖等稿件均為轉載稿,本網轉載僅基於傳遞更多信息之目的,並不意味著贊同轉載稿的觀點或證實其內容的真實性。如其他媒體、網站或個人從本網下載使用,必須保留本網註明的"稿件來源",並自負版權等法律責任。如擅自篡改為"稿件來源:新東方",本網將依法追究法律責任。

③ 如本網轉載稿涉及版權等問題,請作者見稿後在兩周內速來電與新東方網聯繫,電話:010-60908555。

相關焦點

  • 2020考研數學高數要掌握的核心知識點梳理:級數
    2020考研數學高數要掌握的核心知識點梳理:級數 2019-05-01 14:52:04| 來源:廣東考研信息
  • 2016考研數學高數考點:微分方程與無窮級數
    考研複習亦不例外:除了結合考綱把基礎打牢,還需適當總結方法、關注重點。今天精心準備了高數微分方程與無窮級數部分考點分析,希望能夠幫助大家。   ▶微分方程   微分方程可視為一元函數微積分學的應用與推廣。該部分在考試中以大題與小題的形式交替出現,平均每年所佔分值在8分左右。
  • 高數複習重點解析之——微分方程與無窮級數
    考研複習亦不例外:除了結合考綱把基礎打牢,還需適當總結方法、關注重點。針對考生需求,教研老師精心準備了2014年暑期考研數學複習重點解析,以下是高數微分方程與無窮級數部分,供參考。 一、微分方程 微分方程可視為一元函數微積分學的應用與推廣。該部分在考試中以大題與小題的形式交替出現,平均每年所佔分值在8分左右。
  • 2021山東考研數學高數知識點:利用導數求極限
    2021山東考研數學高數知識點:利用導數求極限 2020-03-08 14:28:01| 山東中公教育小編為了方便大家更好的備戰2021山東考研數學,特為大家帶來:2021山東考研數學高數知識點:利用導數求極限,希望大家能在平時多加溫習,牢牢記住。
  • 2019考研高數重難點:級數重點例題
    級數是高數的重要考點,新東方網考研頻道下文通過例題幫助大家更好的來掌握這個知識點:   無窮級數,屬於數學一和數學三的備考範圍。主要考察點有兩個,一是常數項級數的斂散性,二是冪級數的收斂域、求和及將函數展開為冪級數。
  • 考研數學解析之高數微分方程與無窮級數
    二、無窮級數  級數可視為微積分的綜合應用。該部分是數一、數三的必考內容,分值約佔10%。常考的題型有:常數項級數的收斂性,冪級數的收斂半徑和收斂域,冪級數展開,冪級數求和,常數項級數求和以及傅立葉級數。其中冪級數是重點。
  • 2021考研高數核心知識點:無窮級數
    1、掌握級數的基本性質及其級數收斂的必要條件,掌握幾何級數與p級數的收斂性;掌握比值審斂法,會用正項級數的比較與根值審斂法。   2、會用交錯級數的萊布尼茲定理,了解絕對收斂和條件收斂的概念及它們的關係。   3、會求冪級數的和函數以及數項級數的和,掌握冪級數收斂域的求法。
  • 2021考研數學高數衝刺備考:常考題型總結
    2021考研數學高數衝刺備考:常考題型總結 2021考研已經進入緊張的備考強化階段,考生務必要重視,打好基礎,為將來做準備!
  • 2020山東專升本考試:無窮級數
    2020山東專升本考試:無窮級數 有很大一批人因為數學差而對專升本望而卻步,其實數學沒有那麼可怕。而高數又是重中之重,下面帶大家一起梳理一下高數重要考點知識點。今天山東中公教育小編就整理分享:2020山東專升本考試:無窮級數的相關內容,希望對大家有所幫助。
  • 2018考研數學(一)真題解析:高數部分
    2017年12月24日萬學海文數學教研組第一時間解析了考研數學真題,從總體上來講,今年的試題難度略高於去年,題型比較新穎,個別題有一定的計算量,因為題目新穎,所以同學們在做題的時候可能會有一點"不適應"。但是這些題也是屬於運用考試大綱規定的基本知識點來解題的。下面就數學一的高等數學考查內容進行詳細解讀。
  • 無窮級數,常微分方程,指數級數,冪級數求和.
    #數學分析#HLWRC高數不定積分求導驗證,鄉下話niaiwaha(你愛蛙哈)=聽來=梨比=隨便他。#無窮級數#冪級數求和函數,sum(n,0,inf)(x^(3n+1)/(3n+1)!),常微分方程同理可得特徵方程,指數級數自造自解...  http://t.cn/A6bQ999K。。微博@海離薇。關注我就屏蔽我吧。。。。
  • 專家指導:考研高數求極限的幾種方法
    舉報 核心提示:考研高數求極限的幾種方法
  • 2021考研初試,高等數學考前必看題型之級數,望學有所獲
    2020-12-24 14:50:44 來源: 文都考研課代表 舉報
  • 乾貨:2021考研高數隱函數微分法:對數求導例1
    摘要:想考研先複習數學,以下是幫幫整理的關於2021考研高數隱函數微分法:對數求導例1相關資訊文章,一起關注一下吧~幫幫友情提示:乾貨:2021考   摘要:想考研先複習數學,以下是幫幫整理的關於「2021考研高數隱函數微分法:對數求導例1」相關資訊文章,一起關注一下吧~
  • 2021考研數學高數複習知識點:函數、極限與連續怎麼考察
    2021考研數學高數複習知識點:函數、極限與連續怎麼考察  註:本站稿件未經許可不得轉載,轉載請保留出處及源文件地址。
  • 無窮級數,微分方程.常數變易法.
    #無窮級數#高等數學精髓出自貼吧大神baqktdgt,饕餮盛宴+冪級數求和函數sum(n,0,∞)((2n)!!
  • 無窮級數.微分方程常數變易法.
    #無窮級數#西格瑪Σ毫無退路可言,貼吧大佬baqktdgt。#微分方程#(pyq)常數變易法被綁架,土話後援會被捆綁方可把難題打翻一片piang翻車了,#HLWRC高數#我長得醜想得美,,,糾錯這數學覺醒篇章絕了...  http://t.cn/A6byGkhw ​​​。。。#無窮級數#西格瑪Σ毫無退路可言,貼吧大佬baqktdgt。
  • 2015年與2014年數三真題高數知識點考查對比
    2015年與2014年數三真題高數知識點考查對比 http://kaoyan.eol.cn    跨考教育  2014-12-28  大 中 小   為幫助大家了解今年和去年考研數學三有什麼樣的變動,下面跨考教育數學教研室佟慶英老師就2015年與2014年數三真題高數知識點作如下分析:
  • 2021考研數學高數衝刺備考:函數、極 限與連續
    2021考研數學高數衝刺備考:函數、極 限與連續 2021考研已經進入緊張的備考強化階段,考生務必要重視,打好基礎,為將來做準備!
  • 2020考研數學整體評述(蘭州新東方)
    這個也是近些年來考研數學在大綱十多年不變的情況下的,逐步尋求漸變的一個過程。例如今年選擇題,高數考察了無窮小的比較,但是與往年不同的是換了一個變限積分的「外殼」。在導數定義和多元函數的可微定義,阿貝爾定理的考察上都說明了考試還是從「三基」出發,都是知識點難度適中,但是靈活性較強,對學生的基本功要求不低。