信號與系統公式大全(傅立葉變換、拉普拉斯變換、Z變換、卷積...)

2020-11-23 電子工程專輯

今天大家整理了信號與系統的公式大全,主要包括傅立葉變換、拉普拉斯變換、Z變換、卷積...相信我,收藏起來,今後用得上。



直接上圖:


推薦閱讀:

  • 數字萬用表四種妙用方法

  • MOS管和IGBT管有什麼區別?別傻傻分不清了

  • 硬體工程師的設計經驗都是電路板堆出來的...

  • 原來我不懂二極體…

  • LED燈,你確定真的會用嗎?

  • 9年FPGA工作經驗,轉行了,苦海無涯……

  • 常用印製電路板標準

  • 19種5V怎麼轉3.3V的方法!收藏,會考!


相關焦點

  • 傅立葉變換,拉普拉斯變換和Z變換的意義
    傅立葉變換就是將一個信號的時域表示形式映射到一個頻域表示形式;逆傅立葉變換恰好相反。這都是一個信號的不同表示形式。它的公式會用就可以,當然把證明看懂了更好。  對一個信號做傅立葉變換,可以得到其頻域特性,包括幅度和相位兩個方面。幅度是表示這個頻率分量的大小,那麼相位呢,它有什麼物理意義?頻域的相位與時域的相位有關係嗎?
  • 傅立葉變換、拉氏變換、z變換的含義
    答:fourier變換是將連續的時間域信號轉變到頻率域;它可以說是laplace變換的特例,laplace變換是fourier變換的推廣,存在條件比fourier變換要寬,是將連續的時間域信號變換到復頻率域(整個複平面,而fourier變換此時可看成僅在jΩ軸);z變換則是連續信號經過理想採樣之後的離散信號的laplace變換,再令z=e^sT時的變換結果(T為採樣周期),
  • 傅立葉變換、拉普拉斯變換、Z變換的聯繫是什麼?為什麼要進行這些變換?
    導讀:在知乎上看到一個問題,傅立葉變換、拉普拉斯變換、Z 變換的聯繫是什麼?為什麼要進行這些變換?我覺得這是一個非常好的問題,貌似一下子也回答不上來,所以整理學習並分享一下。什麼是數學變換?所以答案是這兩者從本質上不是一個概念,傅立葉級數是周期信號的另一種時域的表達方式,也就是正交級數,它是不同的頻率的波形的時域疊加。而傅立葉變換則是完全的頻域分析,傅立葉級數適用於對周期性現象做數學上的分析,傅立葉變換可以看作傅立葉級數的極限形式,也可以看作是對周期現象進行數學上的分析,同時也適用於非周期性現象的分析。什麼是拉普拉斯變換?
  • 傅立葉變換、拉普拉斯變換、Z變換最全攻略
    傅立葉變換就是將一個信號的時域表示形式映射到一個頻域表示形式;逆傅立葉變換恰好相反。這都是一個信號的不同表示形式。它的公式會用就可以,當然把證明看懂了更好。  對一個信號做傅立葉變換,可以得到其頻域特性,包括幅度和相位兩個方面。幅度是表示這個頻率分量的大小,那麼相位呢,它有什麼物理意義?頻域的相位與時域的相位有關係嗎?
  • 對傅立葉變換、拉氏變換、z變換詳細剖析
    答:fourier變換是將連續的時間域信號轉變到頻率域;它可以說是laplace變換的特例,laplace變換是fourier變換的推廣,存在條件比fourier變換要寬,是將連續的時間域信號變換到復頻率域(整個複平面,而fourier變換此時可看成僅在jΩ軸);z變換則是連續信號經過理想採樣之後的離散信號的laplace變換,再令z=e^sT時的變換結果(T為採樣周期),所對應的域為數字復頻率域,
  • 傅立葉變換、拉氏變換、z變換的含義到底是什麼?
    ,存在條件比fourier變換要寬,是將連續的時間域信號變換到復頻率域(整個複平面,而fourier變換此時可看成僅在jΩ軸);z變換則是連續信號經過理想採樣之後的離散信號的laplace變換,再令z=e^sT時的變換結果(T為採樣周期),所對應的域為數字復頻率域,此時數字頻率ω=ΩT。
  • 【E課堂】傅立葉變換拉普拉斯變換的物理解釋及區別
    傅立葉變換就是將一個信號的時域表示形式映射到一個頻域表示形式;逆傅立葉變換恰好相反。這都是一個信號的不同表示形式。它的公式會用就可以,當然把證明看懂了更好。  對一個信號做傅立葉變換,可以得到其頻域特性,包括幅度和相位兩個方面。幅度是表示這個頻率分量的大小,那麼相位呢,它有什麼物理意義?頻域的相位與時域的相位有關係嗎?
  • 傅立葉變換、拉普拉斯變換、Z 變換的聯繫是什麼?為什麼要進行這些變換?
    不是很複雜吧,你是不是很疑惑,為什麼長得和傅立葉變換的標準公式差的有點多呢,標準公式不是長得是這樣麼:你看,最終還不是換湯不換藥,無非就是多了個複數,這個複數其實沒有別的其它意義,作用就是在計算中和cos區分開來,扯到複平面上繞圈圈?沒必要!真的,傅立葉搞懂了拉普拉斯變換基本上一句話就能講完,如果不扯點傅立葉變換的東西,我估計會因為回答問題過於簡短待會答案都被摺疊了。
  • 拉普拉斯變換——也就這麼回事
    拉普拉斯變換是在現代工程學中使用最廣泛的數學工具,它通過數學變換將微積分方程轉化成代數方程,極大地簡化了用一般方法去求解微積分方程。拉普拉斯變換在許多工程技術和科學研究領域中有著廣泛的應用,特別是在力學系統、電學系統、自動控制系統、可靠性系統以及隨機服務系統等系統科學中都起著重要作用。
  • 【原創】圖解傅立葉變換
    之前看過一篇關於傅立葉分析的文章,對傅立葉變換、時域、頻域等有了點直觀的理解,但具體到計算上依然是困惑的並且對於一些概念比如卷積、可積、不可積等也是似懂非懂。由於傅立葉公式比較抽象所以就在思考能否構建一個模型,通過模型直觀的去理解或解釋傅立葉公式?
  • 拉普拉斯變換是做什麼用的
    拉普拉斯變換是針對系統的,傅立葉變換是針對信號的。從工程意義上說,拉普拉斯變換並不是簡單的傅立葉變換推廣!
  • 信號與系統:傅氏變換與拉氏變換的物理解釋
    摘要:在信號與系統學習中,傅立葉變換、拉普拉斯變換是基礎知識,本文詳細解釋了什麼是傅氏變換、拉氏變換。
  • 拉普拉斯變換4:單邊拉普拉斯變換
    單邊拉普拉斯變換在分析具有非零初始條件的因果系統時,有很大的價值。單邊拉普拉斯變換定義:
  • 深入淺出的學習傅立葉變換
    學習傅立葉變換需要面對大量的數學公式,數學功底較差的同學聽到傅立葉變換就頭疼。事實上,許多數學功底好的數位訊號處理專業的同學也不一定理解傅立葉變換的真實含義,不能做到學以致用!本文引用地址:http://www.eepw.com.cn/article/272577.htm  事實上,傅立葉變換的相關運算已經非常成熟,有現成函數可以調用。對於絕大部分只需用好傅立葉變換的同學,重要的不是去記那些枯燥的公式,而是解傅立葉變換的含義及意義。
  • 學不到的數學經典:拉普拉斯本人是如何推導出拉普拉斯變換公式的
    傅立葉變換和拉普拉斯變換是高等數學的重要內容,這兩大變換貫穿於各個自然學課,傅立葉變換雖然好用,而且物理意義明確,但有一個最大的問題是其存在的條件比較苛刻,比如時域內絕對可積的信號才可能存在傅立葉變換。
  • 拉普拉斯變換的物理意義是什麼?
    在電路分析中使用這種方法建立系統的數學模型也十分簡便,而且電容電感可以寫成等效容抗感抗值,之後寫迴路方程,按照Cramer法則求解即可。這種方法雖然實用,卻受到了數學家的質疑,因為缺少嚴謹的數學論證,後來人們在Laplace的著作中找見了可靠的依據,這種方法便被稱為拉普拉斯變換法。
  • 用冪級數推導出「拉普拉斯變換」
    我們知道數學中的三大變換:傅立葉變換,拉普拉斯變換,Z變換貫穿於整個信號處理與複變函數,拉普拉斯將傅立葉在頻域不能解決的問題推廣到復頻域,所以其應用也更為廣泛。他是如何得到的呢?首先來看冪級數和形式:冪級數在數學分析中很重要,其簡單的形式曾導出了重要的泰勒公式。
  • 「趣味數學」傅立葉變換及其在人工智慧中的應用
    傅立葉變換不僅廣泛應用於信號(無線電、聲學等)處理,而且廣泛應用於圖像分析等領域。邊緣檢測、圖像濾波、圖像重建和圖像壓縮。一個例子:透射電鏡圖像的傅立葉變換有助於檢查樣本的周期性。數據的傅立葉變換可以擴展分析樣本的可訪問信息。
  • 不看任何數學公式來講解傅立葉變換
    今天我們再次給大家整理重發一篇去年分享過的《不看任何數學公式來講解傅立葉變換》一文,來增進大家的理解。因為,往昔是一個連續的非周期信號,而回憶是一個周期離散信號。  是否有一種數學工具將連續非周期信號變換為周期離散信號呢?抱歉,真沒有。  比如傅立葉級數,在時域是一個周期且連續的函數,而在頻域是一個非周期離散的函數。這句話比較繞嘴,實在看著費事可以乾脆回憶第一章的圖片。
  • 拉普拉斯變換及其逆變換表拉普拉斯變換及其逆變換表
    拉普拉斯變換應用領域定理   有些情形下一個實變量函數在實數域中進行一些運算並不容易,但若將實變量函數作拉普拉斯變換,並在複數域中作各種運算,再將運算結果作拉普拉斯反變換來求得實數域中的相應結果,   在經典控制理論中,對控制系統的分析和綜合,都是建立在拉普拉斯變換的基礎上的。