深入淺出的學習傅立葉變換

2020-12-01 電子產品世界

  學習傅立葉變換需要面對大量的數學公式,數學功底較差的同學聽到傅立葉變換就頭疼。事實上,許多數學功底好的數位訊號處理專業的同學也不一定理解傅立葉變換的真實含義,不能做到學以致用!

本文引用地址:http://www.eepw.com.cn/article/272577.htm

  事實上,傅立葉變換的相關運算已經非常成熟,有現成函數可以調用。對於絕大部分只需用好傅立葉變換的同學,重要的不是去記那些枯燥的公式,而是解傅立葉變換的含義及意義。

  本文試圖不用一個數學公式,採用較為通俗的語言深入淺出的闡述傅立葉變換的含義、意義及方法,希望大家可以更加親近傅立葉變換,用好傅立葉變換。

  一偉大的傅立葉、偉大的爭議!

  1807年,39歲的法國數學家傅立葉於法國科學學會上展示了一篇論文(此時不能算發表,該論文要到21年之後發表),論文中有個在當時極具爭議的論斷:「任何連續周期信號可以由一組適當的正弦曲線組合而成」。

  這篇論文,引起了法國另外兩位著名數學家拉普拉斯和拉格朗日的極度關注!

  

 

  58歲的拉普拉斯贊成傅立葉的觀點。

  71歲的拉格朗日(貌似現在的院士,不用退休)則反對,反對的理由是「正弦曲線無法組合成一個帶有稜角的信號」 。屈服於朗格朗日的威望,該論文直到朗格朗日去世後的第15年才得以發表。

  之後的科學家證明:傅立葉和拉格朗日都是對的!

  有限數量的正弦曲線的確無法組合成一個帶有稜角的信號,然而,無限數量的正弦曲線的組合從能量的角度可以非常無限逼近帶有稜角的信號。

  二傅立葉變換的定義

  後人將傅立葉的論斷進行了擴展:滿足一定條件的函數可以表示成三角函數(正弦和/或餘弦函數)或者它們的積分的線性組合。如何得到這個線性組合呢?這就需要傅立葉變換。

  一定條件是什麼呢?

  這是數學家研究的問題,對於大多數搞電參量測量的工程師而言,不必關注這個問題,因為,電參量測量中遇到的周期信號,都滿足這個條件。

  這樣,在電參量測量分析中,我們可以用更通俗的話來描述傅立葉變換:

  任意周期信號可以分解為直流分量和一組不同幅值、頻率、相位的正弦波。分解的方法就是傅立葉變換。

  並且,這些正弦波的頻率符合一個規律:是某個頻率的整數倍。這個頻率,就稱為基波頻率,而其它頻率稱為諧波頻率。如果諧波的頻率是基波頻率的N倍,就稱為N次諧波。直流分量的頻率為零,是基波頻率的零倍,也可稱零次諧波。

  三傅立葉變換的意義

  1為什麼要進行傅立葉變換呢?

  傅立葉變換是描述信號的需要。

  只要能反映信號的特徵,描述方法越簡單越好!

  信號特徵可以用特徵值進行量化。

  所謂特徵值,是指可以定量描述一個波形的某種特徵的數值。全面描述一個波形,可能需要多個特徵值。

  比如說:正弦波可以用幅值和頻率兩個特徵值全面描述;方波可以用幅值、頻率和佔空比三個特徵值全面描述(單個周期信號不考慮相位)。

  上述特徵值,我們可以通過示波器觀測實時波形獲取,稱為時域分析法。事實上,許多人都習慣於時域分析法,想要了解一個信號時,一定會說:「讓我看看波形!」

  可是,除了一些常見的規則信號,許多時候,給你波形看,你也看不明白!

  複雜的不講,看看下面這個波形,能看出道道嗎?

  

 

  我們能看到的僅僅是一個類似正弦波的波形,其幅值在按照一定的規律變化。

  如何記載這個波形的信息呢?尤其是量化的記載!

  很難!

  事實上,上述波形採用傅立葉變換後,就是一個50Hz的正弦波上疊加一個40Hz的正弦波,兩者幅度不同,40Hz的幅度越大,波動幅度就越大,而波動的頻率就是兩者的差頻10Hz(三相異步電動機疊頻溫升試驗時的電流波形)。

三相異步電動機相關文章:三相異步電動機原理

相關焦點

  • 神作:深入淺出傅立葉變換
    原標題:神作:深入淺出傅立葉變換 作 者:韓 昊 知 乎:Heinrich 微 博:@花生油工人 知乎專欄:與時間無關的故事 傅立葉分析可分為傅立葉級數(Fourier Serie)和傅立葉變換(Fourier Transformation),我們從簡單的開始談起。 二、傅立葉級數(Fourier Series)的頻譜 還是舉個慄子並且有圖有真相才好理解。
  • 離散傅立葉變換學習筆記
    DFT(discrete fourier transform),稱為離散傅立葉變換,是數位訊號處理領域的常用工具。DFT可以計算出離散數據序列的頻譜。DFT的源頭,是連續傅立葉變換,用於將連續時間信號x(t)轉換成連續頻域信號X(f)。   但是,連續傅立葉變換不適合計算機上應用,所以工程師們就發明了離散傅立葉變換(DFT)。
  • 傅立葉變換
    傅立葉級數實際實際是對周期函數和半周期函數的按基地函數去1、cosx、cos2x、...cosnx、sinx、sin2x、sinnx的展開式。如果定義在(-∞,∞)區間的非周期函數還能進行傅立葉展開嗎?傅立葉計算擴展到連續變換的情況後就是傅立葉積分。已知周期為2π的函數用傅立葉展開式形式如下:
  • 可視化傅立葉變換:矩形波的傅立葉變換過程原理
    連續傅立葉變換採用輸入函數f(x)中的時域和把它變成一個全新功能的頻域中的函數F(ω),而傅立葉變換是專門用來解決非周期函數的,非周期函數通過傅立葉變換實現從時域到頻域的轉換,如下對矩形波進行傅立葉變換矩形波是一個比較簡單的周期函數,如下只有一個矩形,所以看作非周期函數,可對其進行傅立葉變換
  • 傅立葉變換,拉普拉斯變換和Z變換的意義
    傅立葉變換能將滿足一定條件的某個函數表示成三角函數(正弦和/或餘弦函數)或者它們的積分的線性組合。在不同的研究領域,傅立葉變換具有多種不同的變體形式,如連續傅立葉變換和離散傅立葉變換。  傅立葉變換是一種解決問題的方法,一種工具,一種看待問題的角度。
  • 傅立葉變換、拉氏變換、z變換的含義
    傅立葉變換的實質是將一個信號分離為無窮多多正弦/復指數信號的加成,也就是說,把信號變成正弦信號相加的形式——既然是無窮多個信號相加,那對於非周期信號來說,每個信號的加權應該都是零——但有密度上的差別,你可以對比概率論中的概率密度來思考一下——落到每一個點的概率都是無限小,但這些無限小是有差別的。所以,傅立葉變換之後,橫坐標即為分離出的正弦信號的頻率,縱坐標對應的是加權密度。
  • Matlab與傅立葉變換
    今天,二狗給大家講一講Matlab實現傅立葉變換。大家都知道,信號分為兩種,確定信號和不確定信號。在確定信號中,有兩個非常重要的類別,時域分析和頻域分析。而將兩者充分結合的,就是我們今天要講的傅立葉變換。絕大多數工科狗在大一或者大二的時候,都或多或少接觸過傅立葉變換。二狗也不例外。當初二狗學《複變函數與積分變換》時,差點被搞成死狗,就是因為傅立葉變換。
  • 傅立葉為何變換?
    傅立葉變換是很多理工科同學本科階段會接觸的基本概念,但也是比較令人困惑的概念之一。
  • 傅立葉變換終極解釋
    而傅立葉變換則可以讓微分和積分在頻域中變為乘法和除法,大學數學瞬間變小學算術有沒有。傅立葉分析當然還有其他更重要的用途,我們隨著講隨著提。———————————————下面我們繼續說相位譜:通過時域到頻域的變換,我們得到了一個從側面看的頻譜,但是這個頻譜並沒有包含時域中全部的信息。
  • 對傅立葉變換、拉氏變換、z變換詳細剖析
    1、關於傅立葉變換變換?所以,傅立葉變換之後,橫坐標即為分離出的正弦信號的頻率,縱坐標對應的是加權密度。對於周期信號來說,因為確實可以提取出某些頻率的正弦波成分,所以其加權不為零——在幅度譜上,表現為無限大——但這些無限大顯然是有區別的,所以我們用衝激函數表示。已經說過,傅立葉變換是把各種形式的信號用正弦信號表示,因此非正弦信號進行傅立葉變換,會得到與原信號頻率不同的成分——都是原信號頻率的整數倍。
  • 傅立葉變換、拉氏變換、z變換的含義到底是什麼?
    所以,傅立葉變換之後,橫坐標即為分離出的正弦信號的頻率,縱坐標對應的是加權密度。對於周期信號來說,因為確實可以提取出某些頻率的正弦波成分,所以其加權不為零——在幅度譜上,表現為無限大——但這些無限大顯然是有區別的,所以我們用衝激函數表示。已經說過,傅立葉變換是把各種形式的信號用正弦信號表示,因此非正弦信號進行傅立葉變換,會得到與原信號頻率不同的成分——都是原信號頻率的整數倍。
  • 傅立葉變換算法(一)
    ,讓各位對其有個總體大概的印象,也順便看看傅立葉變換所涉及到的公式,究竟有多複雜:以下就是傅立葉變換的4種變體連續傅立葉變換   一般情況下,若「傅立葉變換」一詞不加任何限定語,則指的是「連續傅立葉變換」。
  • 【原創】圖解傅立葉變換
    之前看過一篇關於傅立葉分析的文章,對傅立葉變換、時域、頻域等有了點直觀的理解,但具體到計算上依然是困惑的並且對於一些概念比如卷積、可積、不可積等也是似懂非懂。由於傅立葉公式比較抽象所以就在思考能否構建一個模型,通過模型直觀的去理解或解釋傅立葉公式?
  • 【E課堂】傅立葉變換拉普拉斯變換的物理解釋及區別
    本文引用地址:http://www.eepw.com.cn/article/201607/294032.htm  傅立葉變換能將滿足一定條件的某個函數表示成三角函數(正弦和/或餘弦函數)或者它們的積分的線性組合。在不同的研究領域,傅立葉變換具有多種不同的變體形式,如連續傅立葉變換和離散傅立葉變換。
  • 不看任何數學公式來講解傅立葉變換
    今天我們再次給大家整理重發一篇去年分享過的《不看任何數學公式來講解傅立葉變換》一文,來增進大家的理解。  或者我們也可以換一個角度理解:傅立葉變換實際上是對一個周期無限大的函數進行傅立葉變換。  好了,講到這裡,相信大家對傅立葉變換以及傅立葉級數都有了一個形象的理解了,我們最後用一張圖來總結一下:
  • 在MATLAB中如何實現快速傅立葉變換
    首先,為什麼要進行傅立葉變換?
  • 大神總結:傅立葉連續、離散變換
    下面,再給出離散傅立葉變換的公式:正變換:這就是離散傅立葉變換的公式了。那麼離散傅立葉逆變換的公式又是怎樣呢,我們可以根據連續傅立葉逆變換的公式來寫出。首先給出連續傅立葉逆變換的公式:來開始推導正變換公式的,如果我用推導的話,那麼可以很容易想到1/N將不會出現在正變換公式裡。以上推導講完了,那麼究竟離散傅立葉變換和連續傅立葉變換有什麼關係呢?
  • 完全搞懂傅立葉變換和小波(1)——總綱
    無論是學習信號處理,還是做圖像、音視頻處理方面的研究,你永遠避不開的一個內容,就是傅立葉變換和小波。但是這兩個東西其實並不容易弄懂,或者說其實是非常抽象和晦澀的!
  • 第三章 離散傅立葉變換
    本章的主題就是離散傅立葉變換。只講實用的,不講虛的。工程化的講解有助於同學們消化理論知識。
  • 變換的真諦:「傅立葉變換」形象直觀的本質原理
    傅立葉變換在信號處理,熱了學,聲學中隨處可見他的身影,但都是以複雜的數學推導得出。本篇以通俗的方式向廣大愛好者展現出傅立葉變換的意義與樂趣:我們從圓的轉動頻率不同的思路出發,將時域信號分離出來,得到傅立葉變換最直觀的結果。如圖:是一個固定周期信號波,我們把這個波形纏繞在一個旋轉的圓周上(形如花瓣)。箭頭指的是同一時刻,圓與信號波的對應位置。