熱電(TE)材料能夠實現熱和電的直接相互轉換。
由於化石燃料的在過去二十年中日益增長的能源需求,現已經無法滿足日益增長的需要。熱電材料的開發和應用受到了廣泛的關注。 熱電裝置的轉換效率是直觀的表徵數據。其中Seebeck係數,電導率和熱導率(包括晶格貢獻和載流子貢獻),以及工作溫度都是需要考量的重點。近年來,能帶工程和聲子工程分別用於優化電子和熱輸運性能,以最大限度地提高性能,包括能帶收斂、聲子散射、納米結構和引入點缺陷等都是改良性能的好方法。在發電方面,一些良好的TE材料在700K以上的工作溫度下表現優異,如PbTe、半Heusler合金等。然而,在400-700K的溫度範圍內,鮮有報到。但是對於餘熱收集的TE材料,開發並應用於400-700K溫度內,高效的TE材料在實踐中具非常重要的應用前景。
浙江大學朱鐵軍教授、趙新兵教授課題組,通過合金化和熱變形增強等方法提升了中溫熱電材料n型碲化鉍基合金的熱電性能,相關研究成果發表在Journal of Materiomics第4卷第3期,題目為Enhanced thermoelectric performance of n-type bismuth-telluride-based alloys via In alloying and hot deformation for mid-temperature power generation。您可以點擊文末「閱讀全文」免費下載!
Feng Li, Renshuang Zhai, Yehao Wu, Zhaojun Xu, Xinbing Zhao, Tiejun Zhu. Enhanced thermoelectric performance of n-type bismuth-telluride-based alloys via In alloying and hot deformation for mid-temperature power generation,Journal of Materiomics 2018; 4 (31): 208-214.
內容概述
碲化鉍基合金是用於室溫製冷的最廣泛商用熱電材料。通過合金化摻銦和熱變形等工藝的,成功地將n型鉍-碲化鉍基熱電材料用於中溫發電的應用中。採用SbI3摻雜調節載流子濃度並協同銦合來增加帶隙,抑制中溫範圍內的雙極傳導。由於熱變形引起的多尺度微結構的產生,使得熱導率顯著降低。通過實驗表明,熱變形後的Bi1.85In0.15Te2Se+0.25wt% SbI3合金在625K處達到∼1.1的zT峰值,顯示了該合金在中溫TE發電中的巨大應用前景。
Fig. 1. Previous study on band gap of Bi2Te3-xSex
Fig.1顯示了n型Bi2Te3-x性能帶隙隨成分的變化趨勢。與先前的結果達成一致,即Eg在x=1(Bi2Te2Se)處達到最大值,而它在x=3(Bi2Se3)處卻不一致。因此,我們在本工作中選擇Bi2Te2Se作為基體組成。
Fig. 2. XRD patterns of zone melted samples of Bi2-xInxTe2Se +0.25 wt% SbI3 (x = 0–0.20).
如Fig.2所示,ZM Bi2-xInxTe2Se-0.25wt% SbI3系列樣品中沒有觀察到二次相。在製備n型Bi2Te2Se熔化鋼錠過程中,Se和Te原子由於其較低的沸點而比B元素更易揮發,從而使得VTe..和VSe..陰離子空位。過量的Bi原子會佔據Te和Se空位,形成帶負電荷的反位缺陷,導致空穴濃度的增加。
Fig. 3. (a) Carrier concentration nH, and (b) Hall mobility, as a function of In content x in Bi2-xInxTe2Se + 0.25 wt% SbI3 (x = 0–0.2) samples before and after hot deformation.
Fig. 3(a)顯示了Bi2-xInxTe2Se中載流子濃度nH隨In含量的變化。隨著In含量的增加,載流子濃度先增大後減小。取代在Bi位點不產生更多的空穴或電子。因此,載流子濃度的變化應由本徵點缺陷引起。Fig. 3(b)顯示In含量x對室溫載流子遷移率μH的影響。所有樣品的μH隨著In含量的增加而減小,這主要是由於載流子的合金散射增強所致。
Fig. 4. (a) Electrical conductivity, and (b) Seebeck coefficient as a function of temperature for the Bi2-xInxTe2Se + 0.25 wt% SbI3 (x = 0–0.2) samples before and after hot deformation.
Fig. 4(a)顯示樣品電導率的溫度和含量相關性。σ的變化與載流子濃度的In含量依賴性很好地一致)。由於移動性μH的減少, HD樣本的σ值系統地低於ZM樣本。Fig. 4(b)給出了樣品α的溫度依賴性。ZM和HD樣品的Seebeck係數α首先下降,然後隨著含量x(0-0.20)的增加而上升,對應於圖中nH的變化。HD樣品α的降低主要歸因於載體濃度的增加。
Fig. 5. Band gap variation as a function of In content in the ZM Bi2-xInxTe2Se + 0.25 wt% SbI3 (x = 0–0.2) samples.
隨著合金化的增加,帶隙明顯增大,αmax溫度升高。由於合金化過程中Se損失的變化很小,Se缺乏對帶隙增加的影響可以忽略不計。因此,In合金化直接增加了帶隙。
Fig. 6. (a) Temperature dependence of total thermal conductivity κ and (b) room temperature lattice thermal conductivity (κ-κe) as a function of In content x of all Bi2-xInxTe2Se+0.25 wt%SbI3 (x = 0–0.20) ZM and HD samples.
合金化和熱變形對所有樣品熱導率的影響如上圖所示。對於簡併半導體,ZM和HD樣品的總導熱率κ首先略有上升,然後隨著In含量x的增加而下降,這是根據Wiedemann-Franz關係預估的。
Fig. 7. (a) Crystal unit cell; (b) Extended view; (c) Simulated HRTEM image [210]; (d) HRTEM image along [210] shows five-layer layered structure, matching with model, of HD Bi1.85In0.15Te2Se+0.25 wt%SbI3 sample.
Fig. 7顯示了HD Bi1.85In0.15Te2Se+0.25wt%SbI3樣品的層狀結構,與Bi2Te3基材料的晶體結構一致。
Fig. 8. (a) Low-magnification TEM image, contrast difference due to strain field; (b) Med-magnification TEM image, like platelet precipitate, the inset is enlarged view; (c) HRTEM image from (b); (d) HRTEM image showing strain-field domain; (e) and (f) IFFT images of region in (d) marked with blue box, (e) is obtained from one set of reflection spots marked with green circle, showing dislocations; (f) is obtained from one set of reflection spots marked purple circle, showing free of dislocation. (e) and (f) reflect the strain state is anisotropy of HD Bi1.85In0.15Te2Se+0.25 wt%SbI3 sample.
Fig. 9. (a) Temperature dependence of zT of all Bi2-xInxTe2Se + 0.25 wt% SbI3 (x = 0–0.20) ZM and HD samples, (b) Temperature dependent zT values for the n-type V-VI compounds in different temperature ranges.
亮點
作者介紹
Feng Li is a Master student of School of Materials Science and Engineering, Zhejiang University. He has been working on bismuth-telluride-based thermoelectric compounds under the supervision of Prof. Tiejun Zhu. He was awarded Bachelor of Engineering Degree in Materials Science and Engineering from Zhejiang University, China, in 2016.
Journal of Materiomics(JMAT),是由中國矽酸鹽學會和Elsevier合作出版的英文期刊。第4期完整版已上線,並且今年特推出柔性電子材料特刊,點擊文末「閱讀全文「可免費獲取所有論文全文。
Journal of Materiomics 為同行評議期刊,被SCI和scopus收錄,影響因子5.797(Material Science, multidisciplinary Q1分區),Citescore為8.,6,從投稿到在線出版一般在60天以內,並且對作者免收版面費!
投稿說明詳見Journal of materiomics徵稿通知,投稿前務必查看JMAT投稿須知。
The Journal of Materiomics is indexed by SCI (IF=5.797, rank in Q1 of Material Science, multidisciplinary) and Scopus (Citescore 8.6), aims to provide a continuous forum for the dissemination of research in the general field of materials science, particularly systematic studies of the relationships among composition, processing, structure, property, and performance of advanced inorganic or non-metallic materials. Supported by the Chinese Ceramic Society, the Journal of Materiomics is a peer-reviewed open-access journal, without publishing charges to authors.