基於Ansoft Designer的射頻功放電路阻抗匹配優化

2021-01-15 電子產品世界

針對工作頻率為433MHz的射頻功率放大電路中的阻抗匹配問題,提出了基於EDA軟體——Ansoft designer的阻抗匹配優化設計方法。運用Ansoft designer對射頻功放電路進行了阻抗匹配優化設計,並對電路進行了仿真分析。仿真結果表明射頻功放電路的增益得到了明顯的提高,反射係數得到了顯著的改善,達到了阻抗匹配優化設計的目的。
  關鍵詞: Ansoft Designer; 射頻功率放大電路; 微帶傳輸線; 阻抗匹配網絡; 計算機仿真

  近年來,無線通信的蓬勃發展,極大地推動了射頻集成電路的設計與研究。在處理射頻電路的實際設計問題時,總會遇到一些非常困難的工作,電路的阻抗匹配就是其中之一。目前阻抗匹配的設計方法主要有:
  (1) 手工計算:這是一種極其繁瑣的方法,因為需要用到較長(幾千米)的計算公式,而且被處理的數據多為複數。
  (2) 經驗:只有在RF領域工作多年的工程技術人員才能使用這種方法。總而言之,它只適合於資深專家。
  (3) EDA軟體:由於傳統的試驗加調試的方法進行阻抗匹配不僅成本高、周期長,而且有很多不確定的因素,不能滿足現代設計的要求。而選用EDA軟體進行射頻電路阻抗匹配設計雖然不能代替真正的實驗,但它能夠在射頻電路的阻抗匹配設計中起到很好的指導作用,為射頻集成電路的設計帶來巨大的便利。
  本文將採用EDA軟體Ansoft designer解決工作頻率為433MHz的射頻功放電路的阻抗匹配問題,使得電路的增益和反射係數得到明顯改善,並且電路的輸入輸出網絡部分獲得良好的阻抗匹配特性。在整個設計過程中射頻電路的設計過程得到簡化,設計成本明顯降低,設計周期大大縮短。
1 射頻功放電路原理
  射頻功率放大電路的原理圖如圖1所示,工作頻率為433MHz,以功放集成晶片RF5110G為主晶片,RF5110G集成了三級放大器。圖1中,與VCC1(1)、VCC(14)和RF OUT(9、10、11、12)連接的電容、電感主要對電源進行濾波。第一級和第二級放大器的關斷由與VAPC1(16)連接的電容控制,第三級放大器的關斷由與VAPC(15)連接的電容控制。輸入和輸出阻抗匹配網絡是需要設計的部分。如何確定阻抗匹配網絡中的微帶傳輸線和元件的類型、參數以及連接關係,是射頻功放阻抗匹配優化設計的關鍵。

2 射頻功放電路阻抗匹配優化設計
  射頻功放阻抗匹配優化設計主要包括:50Ω微帶傳輸線的選型及相關參數的確定;輸入輸出阻抗匹配網絡中元件的類型、參數以及連接關係。
2.1 微帶傳輸線的優化設計
  微帶傳輸線的優化設計需要使用Ansoft designer中的微帶傳輸線分析合成工具來完成。在設計時,考慮到頂層的微帶線兩側有接地的銅線,它們會影響傳輸線阻抗的阻抗值,所以應選用G_CPW型傳輸線,這裡選用FR4作為制板材料,介質為覆銅,厚度d=0.8mm,εr=4.3,Z0=50Ω,槽縫的寬度G=1mm。運用微帶傳輸線分析合成工具軟體分析50Ω的微帶傳輸線,當工作頻率為433MHz時,計算得到微帶傳輸線的寬度W≈1.48mm,如圖2所示。

2.2 輸入輸出阻抗匹配網絡的優化設計
  在進行輸入輸出阻抗匹配網絡的優化設計之前,首先要建立主晶片RF5110G的網絡模型。用網絡模型分析電路可以避開電路的複雜性和非線性,簡化網絡輸入、輸出特性的關係,其中最重要的是不必了解系統的內部結構就可以通過實驗確定網絡輸入、輸出參數,即「黑盒子」 方法。將RF5110G用一個二埠網絡表示,完成RF5110G的建模後,使用Ansoft designer中的Smith圓圖來對輸入輸出阻抗匹配網絡進行優化設計。Smith阻抗匹配優化設計分析圖如圖3所示。由3圖分別得到:輸入阻抗匹配電路由11.37nH(實際設計取12nH)的電感和電長度為5.3°(≈10.6mm)的50Ω微帶傳輸線串聯組成。
  
  輸出阻抗匹配電路由15.05pF(實際設計取15pF)的電容和電長度為13°(≈26mm)的50Ω微帶傳輸線並聯組成。
  
3 仿真分析
  用Ansoft designer軟體分別對完成阻抗匹配優化設計之前、之後的射頻功放電路進行模擬分析。圖4(a)、(b)分別給出了電路S參數的仿真結果:S參數隨頻率增加的變化趨勢。由圖4可知,在433MHz處,射頻功放電路完成阻抗匹配優化設計之前的S11、S21、S22分別為-10.21dB、23.11dB、-2.78dB,完成阻抗匹配優化設計之後的S11、S21、S22分別為-30.96dB、26.8dB、-27.27dB,增益比阻抗匹配前增加了3.7dB,輸入、輸出端的反射係數分別下降了20.75dB、24.49dB,性能明顯優於阻抗匹配前,說明該射頻功放電路的輸入輸出匹配良好,反向隔離特性也良好。


  本文應用EDA軟體——Ansoft designer對射頻功放
  電路進行了阻抗匹配的設計。阻抗匹配完成後,電路仿真結果表明,射頻功放電路的增益得到了明顯的提高,反射係數得到了顯著的改善,達到了阻抗匹配優化設計的目的。
  與其他的阻抗匹配設計方法相比較,基於EDA的阻抗匹配設計方法,大大降低了生產成本,縮短了設計周期,在射頻電路設計方面具有巨大的潛力。


參考文獻
[1] 顧墨琳,林守遠.微波集成電路技術-回顧與展望.微波學報,2000,16(3):279-289.
[2] CARR J J. RF circuit design[M].McGraw-Hill Companies,Inc.NewYork,2001.
[3] LUDWIG R, BRETCHKO P.射頻電路設計.北京:電子工業出版社,2002.
[4] 傅佳輝,吳群.微波EDA電磁場仿真軟體評述.微波學報,2004(2):23-25.
[5] 陳曉東.基於EDA下的高頻電路設計.解放軍信息工程大學碩士論文,2005:20-45.
[6] GREBENNIKOV A著. 射頻與微波功率放大器設計.張玉興,趙宏飛譯. 北京:電子工業出版社,2006.

電路相關文章:電路分析基礎

pa相關文章:pa是什麼


相關焦點

  • 射頻電路阻抗匹配原理
    射頻電路   射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。      射頻電路阻抗匹配原理   在低頻電路中,大多數放大器是電壓放大器。該電路要求與負載阻抗相比,信號源阻抗要非常低。假如一個傳感器或信號源的輸出阻抗是25Ω,一旦接收此信號的放大器的輸人阻抗遠大於25Ω時,這個電路就能正常工作了。「遠大於」的物理意義就是要大1O倍以上,雖然有時要求大100倍以上。因此對於25Ω的信號源來說,雖然最苛刻的條件要求輸入阻抗是2500Ω,而實際放大器的典型輸入阻抗要遠小於這個值。   射頻電路與此有一些不同。
  • 淺析音響各種pop音及功放的阻抗匹配
    淺析音響各種pop音及功放的阻抗匹配 胡薇 發表於 2018-10-04 08:33:00 啟動和關閉時序 為了優化開關機的
  • 射頻識別電路中高頻功放的設計
    射頻識別是一種非接觸式的自動識別技術,他通過射頻信號自動識別目標對象並獲取相關數據,識別工作無需人工幹預,可工作於各種惡劣環境。射頻識別系統由閱讀器和應答器(標籤)構成。當他工作時,閱讀器通過天線發送出一定頻率的射頻信號,當標籤進入磁場時產生感應電流從而獲得能量,發送出自身編碼等信息被讀取器讀取並解碼後送至電腦主機進行有關處理。高頻功率放大器是閱讀器的關鍵部件,主要功能是對標籤信號的返回信號進行功率放大。1 工作原理  圖1為射頻識別電路中的高頻功率放大器原理框圖。
  • 阻抗匹配電路的作用,阻抗匹配的理想模型
    阻抗匹配電路的作用,阻抗匹配的理想模型 李倩 發表於 2018-08-29 10:27:29 一、 阻抗匹配電路的作用 阻抗控制在硬體設計中是一個比較重要的環節
  • 汽車門禁射頻接收器阻抗匹配介紹
    LNA,可選), UHF接收晶片(UHF Receiver),以及這些元器件之間的阻抗匹配電路。如Fig 1.    對於整個接收模塊來說,在PCB設計好的情況下,硬體上性能的優化,主要就集中在了如何進行各個子模塊之間的阻抗匹配,使得信號在各個模塊之間傳輸時損失最小
  • 從阻抗匹配解析射頻傳輸線技術
    人類目前無法控制大氣層,但是可以控制射頻微波傳輸線,只要設法使通信網路的阻抗能相互匹配,發射能量就不會損耗。本文將從阻抗匹配的角度來解析射頻微波傳輸線的設計技術。雖然,Y參數(=[Y][V])的導納和Z參數([V]=[Z])的阻抗,都只能代表低頻電路的特性,但是與代表高頻電路特性的S參數([V-]=[S][V+])類似的Y參數是由四種導納變數構成的,藉由Y參數(一般是從所測量的S參數轉換而來)可以得到電晶體閘阻抗之值,這在深次微米設計中是非常重要的。S參數是被用來表示射頻微波多埠網絡(multiple network)中多電波的電路特性。
  • 基於射頻收發機規格書,介紹射頻接收埠差分匹配電路計算方法
    0 引言 接收靈敏度是GSM手機射頻性能的重要指標,匹配電路的調整是優化接收靈敏度的主要方法。常見的GSM手機射頻接收電路如圖1所示,需要調整的匹配電路主要有兩部份, 一部份是單端匹配電路, 是調整SAWFilter單端輸入埠至天線埠路徑的阻抗到50歐姆;另一部份是差分匹配電路,是調整差分路徑的阻抗滿足SAW Filter負載阻抗的要求。一般大家都比較熟悉單端匹配電路的調試方法,本文介紹的是如何根據SAWFilter和RF Transceiver規格書的要求來計算差分匹配電路的值。
  • 射頻收發器接收埠差分匹配電路的計算
    摘 要: 根據實例介紹GSM手機中射頻收發器接收端的低噪聲放大器(LNA)到表面聲波濾波器(SAW Filter)之間的差分匹配電路的計算方法。
  • 一種新型射頻導熱治療儀的功率放大電路的仿真設計
    射頻功率放大器不僅在通訊系統中得到廣泛應用,還逐漸被應用於其他領域內。本文為一種新型射頻導熱治療儀所設計的大功率射頻放大器電路,滿足工作於射頻低端。藉助ADS仿真軟體採用負載牽引技術的設計方式,通過對整體效率、功率增益、功率容量等一系列的對比。得出最佳輸入、輸出阻抗,並進行阻抗匹配電路的設計。
  • 阻抗匹配與 RF 電壓
    設計人員通過使用孔徑和阻抗調諧器可以解決這些問題。然而,並不是任何孔徑或阻抗調諧器都可以使用。 當今的許多應用都需要使用更穩定、可靠的調諧產品,才能完全滿足設計需求。 01阻抗匹配與 RF 電壓 設計人員經常要克服的一個挑戰就是天線上的射頻能源。例如,與天線匹配的阻抗可能會在匹配網絡中生成較高的射頻電壓。
  • 阻抗匹配的另一種思路
    從事RF電路設計的工程師都有過這樣的經驗,做匹配電路時,根據數據手冊給的S參數、電路拓撲結構、元器件的取值進行設計,最後得到的結果和手冊上的差別很大。這是為什麼呢?  其主要原因是對射頻電路來說,「導線」不再是導線,而是具有特徵阻抗。如圖2所示,射頻傳輸線看成由電阻、電容和電感構成的網絡,此時需要用分布參數理論進行分析。
  • 射頻MOS功率放大電路模擬器的設計方案分析
    APT公司在其生產的射頻功率MOSFET的內部結構和封裝形式上都進行了優化設計,使之更適用於射頻功率放大器。下面介紹該型號功率放大器的電路結構和設計步驟。雖然可以通過增加匹配網絡來實現阻抗匹配,但是匹配網絡的Q值將很高,其成本也將大大提高。最適宜的方法是採用一個簡單的電感網絡來控制變換過程。輸入阻抗在功率放大器工作過程中並不是固定不變的,由於密勒電容效應的作用,輸入阻抗的變化範圍將相當大。圖3是50MHz/250W功率放大器的電路原理圖。門極匹配通過變壓器和調諧網絡實現。變壓器可以提供推挽結構所需的平衡輸入。
  • 500w大功率功放電路圖(四款功放電路圖詳解)
    打開APP 500w大功率功放電路圖(四款功放電路圖詳解) 發表於 2018-01-26 15:33:40 一.500w大功率功放電路圖(大功率單極電源的輸出電路) 電路的功能 本電路是功率放大器的輸出電路,負載為8歐,有效輸出為500W,輸出電壓為180VP-P,輸出電流峰值可達10A以上,所以它也可用於高輸出單極電源。
  • 射頻電路和數字電路有何區別?射頻電纜和雙絞線的聯繫與區別?
    射頻電路和數字電路有何區別?   對於高速數字電路而言,雖然還是關注電壓,但是其設計方法和射頻電路的設計方法相近,也需要考慮阻抗阻抗匹配,因為反射電壓的存在會導致額外的誤碼率。   射頻電路:   1.關注阻抗匹配或功率,這是設計中最為關鍵的兩個參數,其他中間參數都可以由功率和阻抗來確定;   2.關注頻率響應,通常在頻域內進行分析,因為對於射頻電路模塊而言,帶寬範圍很重要;   3.喜歡用網絡分析儀、頻譜分析哎儀或噪聲測試儀等進行測試,這些儀器輸入/輸出阻抗低,一般都是50歐,往往會對電路產生影響,因此需要在阻抗匹配條件下進行測量
  • 無源UHF RFID標籤的低成本阻抗匹配網絡設計詳細教程
    1 RFID標籤阻抗匹配分析 1.1.1 RFID原理與標籤組成 常見的RFID系統主要由讀寫器和標籤組成。讀寫器向標籤發送射頻連續波(Continuous2wave,簡稱CW),激活標籤晶片並將命令和數據調製到射頻電磁波中。
  • 射頻MOS功率放大電路模擬器的設計方案分析,射頻功率放大器的特性...
    儘管功率放大器的DC非常高,但是由於工作頻率高達50MHz,MOSFET的輸入電容將使其輸入阻抗呈現射頻短路狀態。雖然可以通過增加匹配網絡來實現阻抗匹配,但是匹配網絡的Q值將很高,其成本也將大大提高。
  • 汽車收音機射頻電路設計指南 —電路圖天天讀(131)
    本文介紹了TDA7513的射頻電路設計方法,根據實際設計經驗提出了提高射頻電路EMC特性和噪聲特性的設計方法和措施,並指出了射頻電路性能測試的注意要點。射頻電路是收音機電路設計的重點和難點,如果射頻電路設計不好,收音機的噪限靈敏度和信噪比以及其它技術指標都會大大下降,甚至只能手動收到很少的幾個廣播電臺,自動搜索電臺功能失效。
  • 射頻功放基本線性化技術的原理與方法
    功率放大器是現代通信中一個重要的元件,現代通信系統趨向於使用線性調製方式,這就要求射頻系統具有很好的線性特性,因此,對功放的輸出進行線性化成為現代通信中一個重要的課題。在現代無線通信系統之中,射頻前端部件對於系統的影響起到了至關重要的作用。
  • 射頻電路原理及主要應用
    射頻簡稱RF,射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於1000次的稱為高頻電流,而射頻就是這樣一種高頻電流。射頻電路指處理信號的電磁波長與電路或器件尺寸處於同一數量級的電路。
  • 射頻電感器之阻抗匹配的那些事兒~
    對高頻電路而言,電路之間的電感匹配很重要。電感匹配是指在信號的傳輸線路上,讓發送端電路的輸出阻抗與接收端電路的輸入阻抗一致,匹配後,可以最大限度地把發送端的電力傳送到接收端。  匹配電路使用電容器和電感器,但是實際的電容器和電感器與理想的元件不同,有損耗。表示該損耗的有Q值。Q值越大,表示電容器和電感器的損耗就越小。