浙江一物理老師 自創《楞次定律主題曲》

2020-11-26 海峽網

N海都網記者 翁海霞 整理

海都網訊 怎麼才能記住枯燥的物理定律?譜成歌曲唱吧。近日,新浪微博認證信息為「浙江金華第一中學物理教師」的網友「物理帝師」親手為學生填詞寫了一首歌,名字叫《相見難別亦難高中物理——楞次定律主題曲》。

「楞次定律」是一條電磁學的定律,是俄國物理學家海因裡希·楞次在1834年發現的。楞次定律即感應電流的磁場總要阻礙引起感應電流的磁通量的變化。看上去短短的一行字,卻讓不少學生傷透了腦筋。

「物理帝師」在歌曲裡用通俗易懂的話語把定律「唱」了出來,「相見難,別亦難/怎訴這楞次定律/我變化磁通/他阻礙更堅/只怨這電磁感應/道不盡增反減同/默默地來拒去留/物理事能量總守恆/且看切割又有右手判/變化矣,阻礙矣/從今後感應電流。」套用《西遊記》裡女兒國國王送別唐僧時的配樂哼唱,似乎拉近了物理定律和我們之間的距離。

據了解,這位物理老師名叫陳怡,是一位1987年出生的男生,現在教高二物理。他稱:「我唱歌不好聽,就是愛聽,這首歌還是想請會唱歌的人幫忙錄一下。歌好聽,學生會更加喜歡聽。這首歌要是會唱了,對於定律的內容、本質和解題方法等都會了。」

在「物理帝師」的微博裡,大家對此評價都比較高。

相關焦點

  • 學生弄不懂楞次定律 金一中物理老師寫了一首歌
    浙江在線12月18日訊 金一中物理老師陳怡,號稱「太婆」。別誤會,他可是不折不扣的87年男生。陳怡在金一中工作一年多,現在教高二物理。在微博上,他有個很牛的名字「物理帝師」。昨天,他給記者打電話,想給他寫的歌找個主唱。  寫了什麼歌呢?三句話不離本行。歌名是《相見難別亦難高中物理——楞次定律主題曲》。  楞次定律讓學生們很頭疼。
  • 學生弄不懂「楞次定律」 80後物理老師寫歌幫忙記
    學生弄不懂「楞次定律」 80後物理老師寫歌幫忙記   金一中物理老師陳怡,號稱「太婆」。陳怡在金一中工作一年多,現在教高二物理。在微博上,他有個很牛的名字「物理帝師」。昨天,他給記者打電話,想給他寫的歌找個主唱。  寫了什麼歌呢?三句話不離本行。歌名是《相見難別亦難 高中物理——楞次定律主題曲》。  楞次定律讓學生們很頭疼。陳怡說,自己想了很久,如何讓學生更簡單學會這個定律,辦法就是寫首好記的歌。陳怡喜歡京劇、婺劇,也喜歡作詞作曲。
  • 高中物理:楞次定律知識點總結
    六、楞次定律的特例——閉合迴路中部分導體切割磁感線問題1:當閉合迴路的部分導體切割磁感線也會引起磁通量的變化,從而使迴路中產生感應電流,這種情況下迴路中的電流的方向如何判斷呢,可以用楞次定律判斷電流的方向嗎?
  • 楞次定律
    楞次定律(Lenz's law)是一條電磁學的定律,可以用來判斷由電磁感應而產生的電動勢的方向。
  • 中學小課堂 | 廣義楞次定律中的「愛情公式」
    (當然主要是想和同學們去上學路上順便喝奶茶,吃個路邊攤😍)疫情尾聲,同學們吃夠了玩夠了休息夠了,差不多也是時候玩玩物理了。畢竟高二下學期的同學們要用一學期的時間搞定選修3-2,3-3和3-5三本書的內容,並且更恐怖的是學完這三本書的內容後,高中物理就全學完啦!親,恭喜你就要高三啦!
  • 高考物理知識考題:以下敘述正確的是?物理學史、慣性、楞次定律
    高考物理知識考題:以下敘述正確的是?A.法拉第發現了電磁感應現象B.慣性是物體的固有屬性,速度大的物體慣性一定大C.牛頓最早通過理想斜面實驗得出力不是維持物體運動的原因D.感應電流遵從楞次定律所描述的方向,這是能量守恆定律的必然結果同學們還需要理解題目含義
  • 來拒去留—「矯情」但有用的楞次定律
    麥克斯韋也是這樣,他達到了別人無法企及的高度,也是因為他站在了幾個巨人的肩膀上,這些巨人包括發現電流磁效應的奧斯特,發現電流與電流之間相互作用的安培,提出電磁感應定律的法拉第,當然還有本文的主角——雖然沒有前面說的那幾個巨人那麼「高大」,但是也不「矮」的楞次先生,以及他提出的楞次定律。在科學史中,電和磁是分別發現和研究的。
  • .什麼是楞次定律
    楞次定律是用來確定感生電流(或感應電勢)方向的定則。由物理學家楞次於1833年提出的,該定律指出,感生電流的方向是使它所產生的磁場與引起感應的原有磁場的變化相對抗。例如:當線圈中的磁通量增加時,其中感生電流的方向是使它所產生的磁場反向,而當線圈中的磁通量減少時,則感生電流的方向是使它所產生的磁場與原磁場相同,楞次定律說明電磁現象也符合能量守恆和轉換定律。也可以這樣敘述:當穿過閉合迴路的磁通發生變化時。在迴路內將產生感應電動勢。
  • 高三物理電磁感應與楞次定律思維導圖知識點
    高三物理電磁感應與楞次定律思維導圖知識點 2019-01-21 20:58:37 來源:三好網
  • 電工基礎之楞次定律
    楞次定律講解:確定電磁感應電動勢/電流的方向直導線切割磁力線會產生感應電動勢、而穿過線圈的磁通發生變化也會產生感應電動勢,而楞次定律是用來判斷感應電動勢或感應電流方向的法則。提出過「焦耳-楞次定律」的著名物理學家海因裡希·楞次,在通過大量的電磁感應實驗,總結出確定感應電動勢(也就是感應電流)方向的普遍規律。楞次定律指出:穿過閉合迴路的磁通發生變化時,迴路中就有感應電流產生,而感應電流的方向總是使它產生的磁場去阻礙閉合迴路中原有的磁通的變化。
  • 淺談個人對楞次定律的認識以及簡便理解方法
    楞次定律的內容:感應電流的磁場總要阻礙引起感應電流的磁通量的變化對於大部分的高考學生來說,一些實質性、抽象性的內容理解起來可能比較困難,就需要一些技巧作以通俗的認識和理解,小編作為一名高中物理教師,對於一些物理知識有一些簡單的認識,今天呢,小編就來談談對楞次定律的一些看法,望對高中理科學子有所幫助並且在其它內容的理解上有所啟發
  • 什麼是楞次定律?它又為什麼是正確的呢?
    負號象徵著楞次定律,這個定律是由物理學家海因裡希·楞次制定,根據這個定律,感應電流的方向是這樣的,即該電流所產生的磁場總要阻礙引起感應電流的磁通量的變化。或者,正如格裡菲斯博士的簡潔地總結:大自然憎惡變化。然而,為什麼會這樣呢?大自然既不反對也不贊成變化的影響是深遠的。
  • 電機如何從楞次定律到反電動勢來實現了的運轉?
    楞次定律是以1834年物理學家埃米爾·楞次(Emil Lenz)的名字命名的,他在1834年提出了這一定律指出,在導體中,由變化的磁場感應的電流的方向是,由感應電流產生的磁場與初始變化的磁場相反。這是一個定性定律,它規定了感應電流的方向,但對其大小卻隻字不提。
  • 今日精選∣《楞次定律》作者:瞎書,校園到都市,破鏡重圓!
    《楞次定律》作者:瞎書文案:當初明明是你硬闖進來最後卻是我捨不得你離開陸謙X江露1V1 HE書評:大學老師vs物理學家,校園到都市,破鏡重圓。而且書名很有含義,百度一下楞次定律是什麼:增反減同 增縮減擴 來拒去留 哈哈哈哈。當年高中物理沒白學啊,雖然現在啥也記不起來了。開篇是男女主分開後重逢,女主成了大學老師,男主到女主學校當物理教授,其實完全是委屈了男主好麼,男主明明是物理界大神級別的,完全為了女主才來的。
  • 電磁學基礎:電磁感應現象及楞次定律
    一、電磁感應現象當穿過閉合電路的磁通量發生變化時,電路中有電流產生,這種現象稱為電磁感應現象。二、楞次定律感應電流的磁場總要阻礙引起感應電流的磁通量的變化,這就是楞次定律。1.對楞次定律的理解①.因果關係應用楞次定律實際上就是尋求電磁感應中的因果關係。磁通量發生變化是原因,產生感應電流是結果。
  • 什麼是楞次定律?為什麼它是正確的?
    符號象徵著物理學家海因裡希·倫茨(Heinrich Lenz)提出的楞次定律,根據該定律,感應電流的方向是這樣的,即該電流產生的磁場與它賴以存在的磁通量的變化是抵抗的。或者,正如D.J.格裡菲思 (D.J. Griffiths)簡單總結的那樣:大自然厭惡變化中的變化。然而,為什麼是這樣的呢?
  • 高中物理知識:楞次定律「圖文版」
    一、楞次定律1.內容:感應電流的磁場總要阻礙引起感應電流的磁通量的變化。B.因果關係:二、楞次定律的應用注意:明確有兩個磁場,引起感應電流的磁場(原磁場),感應電流產生的磁場。三、右手定則內容:伸開右手讓拇指跟其餘四指垂直,並且都跟手掌在一個平面內,讓磁感線垂直從手心進入,拇指指嚮導體運動的方向,其餘四指指的就是感應電流的方向右手定則是應用楞次定律中的特例.在一部分導體做切割磁感線運動時,可以用右手定則簡單地判斷出感應電流的方向
  • 電磁感應 | 楞次定律專題,知識點+經典例題
    今天給大家帶來的是楞次定律專題wu~o~~wu~~o~~~( ̄▽ ̄)~♪明明是你先闖入我的世界可最後捨不得的卻是我……——最浪漫的楞次定律A.阻礙引起感應電流的磁通量B.與引起感應電流的磁場方向相反C.阻礙引起感應電流的磁場的磁通量的變化
  • 電流的熱效應:焦耳-楞次定律講解
    這一結論稱為焦耳——楞次定律,其數學表達式為:Q=I²Rt,公式中:Q:電流通過導體所產生的熱量,單位:焦耳(J);I:通過導體的電流,單位:安(A);R:導體的電阻,單位:歐(Ω)如果熱量以卡位單位,則Q=I?Rt公式可寫成:Q=0.24I²Rt=0.24Pt,此公式稱為焦耳-楞次定律。
  • 利用楞次定律的口訣判斷力與運動趨勢,高中物理乾貨分享
    簡介楞次定律的應用考題除了利用左右手定則按部就班的判斷電流和力的方向外,還可以利用口訣快速判斷,這個題型就是講解這些口訣的運用。如圖所示,在水平面上有一光滑的形金屬框架,框架上跨接一金屬杆,在框架的區域內有一豎直方向的勻強磁場(圖中未畫出)。