果蠅角膜納米塗層的逆向和正向工程
作者:
小柯機器人發布時間:2020/9/18 13:55:57
瑞士日內瓦大學Vladimir L. Katanaev團隊取得一項新突破。他們的最新研究提出果蠅角膜納米塗層的逆向和正向工程。這一研究成果發表在2020年9月16日出版的國際學術期刊《自然》上。
他們證明了果蠅角膜上納米塗層的形態和功能之間的明確聯繫。他們發現,由單個突起組成的納米塗層具有更好的抗反射性能,而部分合併的結構則具有更好的抗粘附性能。他們使用生化分析和基因修飾技術對蛋白質視黃素和角膜蠟進行逆向加工,作為納米結構的基礎。
在圖靈模式的背景下,這些構建基塊分別履行激活劑和抑制劑的作用。然後,他們建立低成本的視黃素生產,並將這種合成蛋白與蠟混合,以對各種具有昆蟲樣形態、抗粘連或抗反射功能的人造納米塗層進行前瞻性設計。因此,他們結合的反向工程和正向工程方法提供了一種從可生物降解的材料,經濟地生產功能納米結構塗層的方法。
據了解,昆蟲的眼睛具有抗反射塗層,這是由於角膜表面上的納米結構在空氣的折射率與鏡片材料的折射率之間形成了折射率梯度。這些納米塗層還被證明具有抗粘連功能。在節肢動物中,角膜納米塗層的形態非常多樣,其乳頭狀結構可以組織成陣列或融合成脊狀結構。這種多樣性可以歸因於Alan Turing開發的反應擴散機制和圖案化原理,這些原理在許多生物學環境中都有應用。昆蟲角膜上的納米塗層就是這種圖靈圖案的一個例子,也是納米級圖靈圖案的第一個已知例子。
附:英文原文
Title: Reverse and forward engineering of Drosophila corneal nanocoatings
Author: Mikhail Kryuchkov, Oleksii Bilousov, Jannis Lehmann, Manfred Fiebig, Vladimir L. Katanaev
Issue&Volume: 2020-09-16
Abstract: Insect eyes have an anti-reflective coating, owing to nanostructures on the corneal surface creating a gradient of refractive index between that of air and that of the lens material1,2. These nanocoatings have also been shown to provide anti-adhesive functionality3. The morphology of corneal nanocoatings are very diverse in arthropods, with nipple-like structures that can be organized into arrays or fused into ridge-like structures4. This diversity can be attributed to a reaction–diffusion mechanism4 and patterning principles developed by Alan Turing5, which have applications in numerous biological settings6. The nanocoatings on insect corneas are one example of such Turing patterns, and the first known example of nanoscale Turing patterns4. Here we demonstrate a clear link between the morphology and function of the nanocoatings on Drosophila corneas. We find that nanocoatings that consist of individual protrusions have better anti-reflective properties, whereas partially merged structures have better anti-adhesion properties. We use biochemical analysis and genetic modification techniques to reverse engineer the protein Retinin and corneal waxes as the building blocks of the nanostructures. In the context of Turing patterns, these building blocks fulfil the roles of activator and inhibitor, respectively. We then establish low-cost production of Retinin, and mix this synthetic protein with waxes to forward engineer various artificial nanocoatings with insect-like morphology and anti-adhesive or anti-reflective function. Our combined reverse- and forward-engineering approach thus provides a way to economically produce functional nanostructured coatings from biodegradable materials.
DOI: 10.1038/s41586-020-2707-9
Source: https://www.nature.com/articles/s41586-020-2707-9