沉水植物缺乏功能性氣孔,植物體-水體邊界存在著阻隔氣體擴散的靜水層,水中自由CO2擴散緩慢,這些因素使水生植物普遍受到低濃度無機碳的脅迫。為獲得無機碳,沉水植物在形態結構和生理生化上表現一定的特性,包括薄的葉片層以及對HCO3利用的能力,擬C4型和CAM型光合代謝途徑的選擇。沉水植物C4 和CAM光合代謝是沉水植物在環境脅迫下增加CO2濃度的一種適應,具有生理可塑性。
中國科學院武漢植物園水生植物生物學學科組碩士研究生張藝之在尹黎燕副研究員的指導下,利用pH-drift 技術、Gran滴定、晝夜酸度滴定、光合關鍵酶活性的測定等方法,研究了高濃度(~400 μmol L-1)、低濃度(~5 μmol L-1) CO2對水鱉科植物龍舌草(Ottelia alismoides)和海菜花(Ottelia acuminata)光合CO2濃縮機制的影響。結果表明:兩種植物都具有利用水中HCO3-的能力,提取吸收水中無機碳的能力較強。龍舌草存在夜晚酸積累現象,晝夜?H+為34μequiv g-1FW,可能存在景天酸代謝機制。不同處理後,海菜花的PEPC/Rubisco的值均為1.8,龍舌草高濃度處理後為2.8,低濃度處理後比值為5.9;PEPC、PPDK的活性增加約2倍;兩種植物的脫羧酶NADP-ME活性都很低,而龍舌草的NAD-ME活性隨著PEPC活性增加而增加。表明龍舌草儘管沒有Kranz結構,但可能是NAD-ME亞型的C4植物。研究結果,表明水鱉科的海菜花和龍舌草有著不同的光合CO2濃縮機制來獲取無機碳。
本文為水生植物中發現新的擬C4植物與CAM植物種類、闡明環境因子在水生植物無機碳利用策略選擇中的作用、為高等植物C4與CAM光合途徑的起源、進化及其生態學意義提供一定理論依據,為通過基因工程手段提高植物光合碳同化效率奠定基礎。
本研究受到中國科學院外國專家特聘研究員計劃(2010T2S14, 2013T1S0021) 和國家自然科學基金 (30700083)的資助。相關研究成果已在植物學領域期刊Photosynthesis Research上發表。(生物谷Bioon.com)
生物谷推薦的英文摘要
Photosynthesis Research doi:10.1007/s11120-013-9950-y
Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)
Yizhi Zhang, Liyan Yin, Hong-Sheng Jiang, Wei Li, Brigitte Gontero, Stephen C. Maberly
Two freshwater macrophytes, Ottelia alismoides and O. acuminata, were grown at low (mean 5 μmol L1) and high (mean 400 μmol L1) CO2 concentrations under natural conditions. The ratio of PEPC to RuBisCO activity was 1.8 in O. acuminata in both treatments. In O. alismoides, this ratio was 2.8 and 5.9 when grown at high and low CO2, respectively, as a result of a twofold increase in PEPC activity. The activity of PPDK was similar to, and changed with, PEPC (1.9-fold change). The activity of the decarboxylating NADP-malic enzyme (ME) was very low in both species, while NAD-ME activity was high and increased with PEPC activity in O. alismoides. These results suggest that O. alismoides might perform a type of C4 metabolism with NAD-ME decarboxylation, despite lacking Kranz anatomy. The C4-activity was still present at high CO2 suggesting that it could be constitutive. O. alismoides at low CO2 showed diel acidity variation of up to 34 μequiv g1 FW indicating that it may also operate a form of crassulacean acid metabolism (CAM). pH-drift experiments showed that both species were able to use bicarbonate. In O. acuminata, the kinetics of carbon uptake were altered by CO2 growth conditions, unlike in O. alismoides. Thus, the two species appear to regulate their carbon concentrating mechanisms differently in response to changing CO2. O. alismoides is potentially using three different concentrating mechanisms. The Hydrocharitaceae have many species with evidence for C4, CAM or some other metabolism involving organic acids, and are worthy of further study.