藍藻光合作用功效調控機制研究獲突破—新聞—科學網

2021-01-09 科學網

 

藍藻是一種神奇的存在,雖然不是植物卻能進行光合作用並放出氧氣。藍藻學名藍細菌,其光合作用在地球大氣環境有氧化的進程中起到了十分重要的作用,而且也是無機態的碳進入生物圈的重要途徑。科學家發現,藍藻中含有一種名為「Rubisco」的酶在光合作用中發揮著關鍵作用,但是其工作機制卻長期未被認識。

中國科學技術大學周叢照和陳宇星課題組經過長期的研究,闡明了藍藻RuBisCO酶組裝的分子機理,發現RuBisCO成熟過程的多層次精細動態調控網絡,為人工改造RuBisCO以提高光合作用效率奠定了基礎。相關研究成果5月25日在線發表於《自然—植物》。

RuBisCO酶是光合作用中決定碳同化速率的關鍵酶,同時也是植物光呼吸的關鍵酶,其在光合作用中具有重要的作用。它可以利用太陽能將空氣中的二氧化碳固定起來,既可降低溫室效應,還可充分利用無機碳源,形成碳水化合物,以維持植物體的生命。有研究發現,向植物中添加這種酶,可以有效促進植物生長。然而這種酶的催化效率極低,一個RuBisCO全酶每秒鐘只能催化3~10個二氧化碳分子的轉化。藍藻通過二氧化碳濃縮機制,可以有效提高RuBisCO的催化效率。將藍藻的二氧化碳濃縮系統引入植物被認為是一種潛在的提高植物光合作用效率和產量的方法,然而迄今為止對於RuBisCO組裝和成熟的精細過程仍然不清楚,極大制約了RuBisCO的活性優化和產業應用。

在該研究中,科學家們通過冷凍電鏡單顆粒分析的方法和生化手段,揭開了催化酶RuBisCO發揮功效的神秘面紗,解析了其組裝和調控的多步動態構象和分子機制,為進一步利用RuBisCO酶服務人類奠定了分子基礎。

據了解,藍藻水華的形成機制和幹預策略是周叢照多年來的主要研究領域。「我們應該更多地了解藍藻,然後加以利用,而不是也不可能簡單地將它徹底消滅。藍藻作為地球上最古老的原核生物之一,其生命力非常旺盛。由於前些年淡水湖泊水體受到汙染,藍藻過度繁殖而導致水華,帶來一系列環境問題。但另一方面,藍藻也可以消耗大量空氣中的二氧化碳,還可能用於生產下一代新型綠色能源。因此,藍藻研究具有十分重要的科學意義和實用價值」周叢照說。

相關論文信息:https://doi.org/10.1038/s41477-020-0665-8

 

版權聲明:凡本網註明「來源:中國科學報、科學網、科學新聞雜誌」的所有作品,網站轉載,請在正文上方註明來源和作者,且不得對內容作實質性改動;微信公眾號、頭條號等新媒體平臺,轉載請聯繫授權。郵箱:shouquan@stimes.cn。

相關焦點

  • 中國科大在藍藻光合作用功效調控機制研究中獲重大突破
    中國青年報客戶端訊(通訊員 楊凡 中青報·中青網記者 王磊 王海涵)藍藻學名藍細菌,其光合作用在地球大氣環境有氧化進程中起重要作用。藍藻光合作用中,一種名為「Rubisco」的酶發揮著關鍵作用,但是其工作機制長期未被認識。
  • 科學網—揭示藍藻光合固碳關鍵酶的作用機制
    中國科學技術大學
  • 中國科大科研人員揭開藍藻光合作用關鍵面紗
    中國科大供圖中新網合肥5月27日電 (吳蘭 楊凡)記者27日從中國科學技術大學獲悉,該校科研人員在藍藻光合作用功效調控機制研究上獲重大突破,揭開藍藻光合作用的「關鍵先生」神秘面紗——催化酶RuBisCO的組裝調控機理。藍藻作為地球上最古老的原核生物之一,是一種神奇的存在,不是植物卻能進行光合作用並放出氧氣。
  • 光合固碳關鍵酶組裝精細調控機理獲闡釋—新聞—科學網
    5月25日,《自然—植物》在線發表了中國科學技術大學團隊的最新研究成果,研究人員闡明了藍藻分子伴侶Raf1協助RuBisCO組裝的分子機理,發現RuBisCO成熟過程的多層次精細動態調控網絡,為人工改造RuBisCO以提高光合作用效率奠定了基礎。
  • 中科大揭示藍藻光合作用關鍵機制
    記者5月27日從中國科學技術大學獲悉,該校周叢照和陳宇星課題組經過長期研究,闡明了藍藻RuBisCO酶組裝的分子機理,發現其成熟過程的多層次精細動態調控網絡,為人工提高光合作用效率奠定了基礎。上述最新研究成果於5月25日在線發表在《自然-植物》上。
  • 研究發現水水循環對被子植物的調控作用—新聞—科學網
    近期,中科院昆明植物所研究員張石寶團隊對被子植物適應波動光強的光合調控策略開展了深入的研究,國際上首次揭示了水水循環在波動光強下的重要調控作用
  • 調控費託合成中CO解離作用機制獲進展—新聞—科學網
    在調控費託合成中CO解離的作用機制方面取得進展   近日,中國科學院大連化學物理研究所研究員黃延強
  • 昆明植物所植物適應波動光強的光合調控機制研究獲進展
    揭示植物葉片在波動光強下的光合調控策略,對理解植物適應自然光照具有重要意義,在農作物增產方面也具有潛力。傳統理論認為,環式電子傳遞這一替代電子傳遞途徑是被子植物在波動光強下保護光系統I活性的主要調控機制。根據光合電子傳遞模型,水-水循環的上調和光系統II活性的下調可減少光系統II到光系統I的電子傳遞,避免光系統I活性受到波動光強的損傷。
  • 研究揭示氮添加對植物光合性狀影響全球格局—新聞—科學網
    中國科學院華南植物園生態中心助理研究員梁星雲和博士生張統等在葉清研究員的指導下,揭示氮添加對植物光合性狀影響的全球格局。
  • Sox2/Ddx5與R-loop協同調控體細胞重編程機制獲揭示—新聞—科學網
    Sox2/Ddx5與R-loop協同調控體細胞重編程機制獲揭示相關研究6月10日在線發表於《科學進展》。 「基因表達調控是決定細胞命運的重要因素,通過改變基因的表達模式即可實現對細胞命運的精準調控。」姚紅傑表示,在基因轉錄過程中,會形成一種由單鏈DNA和DNA:RNA雜合鏈組成的三鏈核酸結構,稱為R-loop。已有研究報導R-loop相關蛋白很多都是RBP,然而RBP如何協同R-loop在細胞命運決定中發揮作用尚不清楚。
  • 藻類演變趨勢及機制研究獲進展—新聞—科學網
    該研究首次從鞭毛運動和再生能力角度,解析了水體酸化對微藻運動能力的負面影響及機制,闡述了運動能力改變對微藻群體演變的潛在影響,為系統研究氣候變化條件下水域生態系統生物多樣性格局變遷提供了新的研究思路和重要的理論依據。 據了解,評估和預測氣候變化對水生生物群體及其生態系統的影響是極具挑戰性的國際前沿科學問題。
  • 玉米G蛋白可同時調控發育及免疫機制—新聞—科學網
    因此,確定既控制發育信號又控制免疫信號的關鍵調節機制對於最大化生產率至關重要。12月18日,美國《國家科學院院刊》(PNAS)發表中國農業科學院農業資源與農業區劃研究所(以下簡稱資源區劃所)最新成果,解析了玉米信號開關分子G蛋白對發育及免疫信號的雙重調控機制,為平衡發育及免疫應答
  • 硅藻光合作用結構原子水平三維結構首獲揭示—新聞—科學網
    據介紹,硅藻是海洋主要的浮遊生物之一,貢獻了地球上每年原初生產力的20%左右,且在生物地球化學循環中起著重要作用,這些特徵與其光系統以及外周捕光天線的功能密切相關。不同於綠藻和高等植物,硅藻光系統II(PSII)的外周捕光天線是結合了巖藻黃素和葉綠素a/c的蛋白(FCPs),具有強大的藍綠光捕獲能力和快速光適應能力。
  • 兜蘭種子木質素合成調控其萌發機制研究獲揭示—新聞—科學網
    中國科學院華南植物園農資中心副研究員房林和碩士生徐新等科研人員,在兜蘭種子木質素合成調控其萌發機制研究方面取得重要進展。
  • 氮循環微生物作用機制研究獲突破—新聞—科學網
    本報訊(記者黃辛)華東師範大學劉敏團隊首次從微生物基因水平上揭示了納米銀對水環境氮循環的毒性效應與作用機理,發現環境中廣泛存在的納米銀可通過調控功能微生物的氮代謝過程
  • 全新轉錄調控複合物可抑制轉錄—新聞—科學網
  • 科學家在關聯氧化物摩爾調控研究中取得突破—新聞—科學網
    該研究成果近日在線發表與《自然—物理學》。 由於石墨烯等二維範德瓦爾斯材料層間相互作用非常弱,容易解理並堆垛形成各種人工異質或同質結構。當堆垛的兩層之間有微弱的晶格差異或微小的轉角時,就會形成摩爾圖案。近期研究發現這些二維異質結或同質結體系在摩爾周期勢場作用下,展現出了許多新奇的物理現象,比如在魔角雙層石墨烯中發現了關聯絕緣態以及非常規超導態。
  • 科學家揭示昆蟲變態發育潛在分子機制—新聞—科學網
    據悉,該研究還得到Faculty 1000推薦,被認為是近年來昆蟲發育遺傳學領域的重大突破之一。 動物最終個體大小的調控機制一直以來都是發育生物學的一個既重要又困難的科學問題。在昆蟲中,蛻皮激素(20E)通過誘導昆蟲蛻皮和變態來決定個體生長時間,而胰島素/類胰島素樣肽信號通路(IIS)調控昆蟲生長速率;兩者共同決定昆蟲個體大小。
  • 科學家揭示G蛋白選擇調控機制—新聞—科學網
    研究表明,不同GPCR可選擇性激活一種或多種G蛋白,但一種GPCR如何識別不同類型的G蛋白一直未被清晰闡明,制約了對於G蛋白選擇調控機制的深入理解。   吳蓓麗和趙強聯合研究團隊與國內外合作者一起,通過多學科的緊密合作與艱苦攻關,利用單顆粒冷凍電鏡技術,成功測定了胰高血糖素受體GCGR與其天然配體胰高血糖素以及Gs或Gi結合的兩個複合物結構。
  • 科學家發現核內肌動蛋白調控轉錄機制—新聞—科學網
    這個機理可能是基因調控快速響應環境刺激的分子基礎。 應激性是生命的基本特徵,響應外界刺激的基因表達調控在細胞水平決定了細胞增殖、分化、遷移和死亡,在器官和生物體水平決定了發育、免疫應答和神經可塑性,其調控異常可能會導致腫瘤。細胞及時響應外界刺激的一個策略是形成轉錄工廠,即將應答刺激的多個基因和多個RNA聚合酶拉到一起進行高效、協同的轉錄表達,但是這一過程如何發生和調控尚不清楚。