關於PWM型D類音頻功率放大器的設計

2020-11-25 電子發燒友

關於PWM型D類音頻功率放大器的設計

工程師4 發表於 2018-05-09 14:41:00

中心議題:

D 類音頻功放的系統設計

D 類音頻功放單元電路設計實現

解決方案:

D 類音頻功放單元電路設計

D 類音頻功放具有高效、節能、小型化的優點,廣泛應用於可攜式產品、家庭AV 設備及汽車音響等多個領域。本文設計的D 類音頻功率放大器主要基於以下三個方面考慮:保證高保真度、提高效率和減小體積。文章設計了一款工作於5V 電源電壓並採用PWM 來實現的D 類音頻功率放大器,整個系統包含了輸入放大級、誤差放大器、比較器、內部振蕩電路、驅動電路、全橋開關電路及基準電路。通過引入反饋技術來減小系統的THD 指數,採用雙路反寬調製方案不僅抑制了D 類音頻功率放大器的靜態功耗,而且達到了去除D 類音頻功率放大器輸出端低通濾波器的目的,減小了系統的體積。

1 D 類音頻功放的系統設計

本文所設計的D 類音頻功率放大器的系統結構如圖1 所示。該放大器結構是基於雙邊自然採樣技術方案實現的,在任一時刻輸出所包含的信息量都是單邊採樣方案的兩倍,通過雙邊自然採樣還可以把輸出音頻信號中大量的失真成分移除到人耳所能感應到的音頻帶寬範圍之外,達到去除D 類音頻功率放大器輸出端低通濾波器的目的。


圖1 D 類音頻功率放大器結構

系統採用單電源供電,脈衝信號「out1」和「out2」的高低電平分別為VDD 和GND,輸入放大級由運算放大器OTA 的閉環結構實現,誤差放大器則由運算放大器OTA 與電容Cs 構成。系統工作時,音頻輸入信號Vin 首先經過輸入放大級後輸出兩路差分信號,再與反饋信號求和送到誤差放大器中產生誤差信號VE1、VE2,對三角波載波信號VT 進行調製,輸出兩路脈衝信號「out1」和「out2」以驅動揚聲器發聲。系統包含兩個反饋環路,第一個由R1、Rf1 和OTA 組成,用來設置輸入放大級和整個D 類音頻功率放大器的增益,第二個由R2、Rf2 和後端音頻信號處理電路組成,用來減小系統的THD 指數。

在圖1 中,對電容Cs 充放電的電流I1、I2 由Vout1、Vout2、Vin、R1、Rf1、R2 和Rf2 共同決定,其中電阻和電容必須具有良好的線性度和匹配性,以獲得良好的閉環性能。

開環D 類音頻功率放大器的模型如圖2 所示。


圖2 開環D 類音頻功率放大器模型

此時系統輸出為:

開環系統的總諧波失真為:
       

式(2)中的Vin 為放大器的輸入信號,Vn 為引入的諧波失真,Hf 為傳遞函數。

具有反饋環路的D 類音頻功率放大器的模型如圖3 所示。


圖3 閉環D 類音頻功率放大器模型

此時系統的輸出為:

其中Hfb 為閉環模型的傳遞函數,G 為反饋增益。為了得到相等的放大倍數,設計傳遞函數為:

則式(3)變為:

閉壞系統的總諧波失真為:

比較式(2)和式(6)可以看出,具有反饋環路閉環系統THD 為開環系統THD 的1/(1+HfbG),即通過反饋結構減小了系統的THD。

2 單元電路設計實現

系統單元電路主要包括:輸入放大級、誤差放大器、比較器、驅動電路、全橋開關電路、內部振蕩電路和基準電路。

2.1 輸入放大級

D 類音頻功率放大器的輸入放大級是基於運算放大器(OTA)的閉環結構來實現的,其結構如圖4所示,用來根據需要對輸入的音頻信號作電平調整和信號放大處理,使輸入信號在幅度方面能滿足後級電路的要求,輸入放大級的增益可以通過設置Rf1和R1 的阻值來決定。


圖4 輸入放大級電路結構

2.2 比較器

本文所採用的比較器電路如圖5 所示,比較器電路由三級構成,即輸入預放大級、判斷級(或正反饋級)和輸出數字整形緩衝級。預放大級採用有源負載的差分放大器來實現,其放大倍數不用很大,用來進行輸入信號的放大,以提高比較器的敏感度,並把比較器的輸入信號與來自正反饋級的開關噪聲隔離開;判斷級用來將預放大級的信號進一步放大,為比較器的核心部分,電路中通過把m8 與m9 的柵極交叉互連實現正反饋,以具備能夠分辨非常小的信號的能力,並提高此級電路的增益;輸出緩衝級是一個自偏置的差分放大器,它的輸入是一對差分信號,用來把判斷級的輸出信號轉化成邏輯電平(0V 或5V),即輸出高電平VOH=VDD,輸出低電平VOL=GND。

                                                                                                                                                                      圖5 比較器電路圖

2.3 內部振蕩電路

本文採用的三角波產生電路結構如圖6 所示,其中m5、m6 和m7、m8 構成了兩組恆流源,m9~m13 和Q1 構成了輸出級。在電路中,採用將輸出信號VT 分別反饋到比較器comp1 和comp2,與參考電平VREF1 和VREF2(VREF2


圖6 三角波產生電路

由圖6 可知,VT 初始電壓值為零,電路上電時,由於0

2.4 全橋開關電路

輸出級採用N、P 型功率開關對管組成的全橋開關電路實現,其結構及負載電流流向如圖7 所示。


圖7 全橋電路結構及負載電流示意圖

全橋開關電路工作在開關模式,隨著輸入信號的改變,m1~m4 的狀態隨之轉換,始終只有對角一對功率開關管導通,另一對截止。

2.5 驅動電路

驅動電路結構如圖8 所示,該電路能有效調節死區時間(N 型、P 型功率開關管同時關斷),防止單臂「shoot- through」現象,並有保護關斷功能。輸入信號為比較器輸出的PWM 脈衝信號,PWM1用來驅動N 型功率開關管,PWM2 用來驅動P 型功率開關管。為了避免全橋開關電路中的單臂「shoot- through」現象,當PWM 信號從低電平變為高電平時,PWM2 應首先變為高電平, 關斷PMOS 功率開關管,隨後PWM1 再變為高電平,開啟NMOS 功率開關管,如圖9 所示;反之,當PWM 信號從高變為低時,PWM1 先變為低電平,關斷NMOS 開關功率管,隨後PWM2 再變為低電平,開啟PMOS 開關功率管。實際電路中,可以根據需要通過控制延遲單元的控制位Tc 來調整死區時間的長短。為減小失真,必須減小死區時間,該驅動電路採用了逐級增加驅動能力的方式來驅動功率管,從而減小了必要的死區時間,保證了低失真度。


圖8 驅動電路結構


圖9 死區時間

EN 是控制模塊的使能信號,正常工作為高電平;當出現過流、過溫等情況時,則變為低電平,關斷全橋功率開關電路。

2.6 基準電路

本文所設計的帶隙電壓基準源結構如圖10 所示,主要由核心電路與啟動電路兩部分組成。


圖10 基準電路

核心電路中M1~M12 一起構成共源共柵電流鏡來提供直流偏置,運放op1 採用兩級共源共柵放大。另外,在圖10 電路中引入了負反饋,保證了該偏置電路電流鏡的準確性,同時與電源無關,具有很高的電源抑制比。

電路上電時偏置電路可能會出現零電流的情況,需要啟動電路保證電路能夠正常工作。電路不工作時,EN、Vs1 為0,Vs2、Vs3 為1,M15、M17 不通,運放輸出為高,M3~M6 也不通,整個電路不消耗電流。當EN 由0 變成1 時,由於C1 的作用,Vs1 保持為0,Vs2 為1,Vs3 變為0,此時M15、M17 導通,inp、inn 分別被拉到0、1,運放輸出變為0,M3~M6 導通,M13、M14 支路開始有電流,並對C1 充電,直到Vs1 高過I2 閾值電壓時,Vs2 變為0,Vs3 則變為1,M15、M17 關斷。最終電路偏離零電流狀態,開始正常工作,且Vs1 充至電源電壓,整個啟動電路不再消耗電流。

3 結論

本文研究了基於PWM 調製技術D 類音頻功率放大器的工作原理,通過引入反饋技術減小了D 類音頻功率放大器的THD;通過逐級增加驅動能力的方式減小了必要的死區時間,保證了更低的失真度;採用雙路反寬調製方案,一方面抑制了系統的靜態功耗,另一方面去除了輸出級的LC低通濾波器,達到了減小系統成本和體積的目的。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • PWM型功率放大器長線傳輸波形整型
    摘要:為解決PWM功率放大器輸出長線傳輸引發的波形畸變,可能傷及力矩電動機的問題,對實際系統結構進行了理論分析,找出了可能引發關鍵詞:PWM功率放大器;長線傳輸;波形畸變;濾波器 PWM型功率放大器,因其效率高、體積小,重量輕,即功率密度大等原因,廣泛應用於電動機的驅動等場合。 PWM型功率放大器的輸出,是一種頻率固定,佔空比可連續調節變化的脈衝信號。
  • 詳解智慧型手機音頻放大器電路設計
    本文將重點探討智慧型手機的揚聲器放大器及耳機放大器性能要求,介紹安森美半導體相應的音頻放大解決方案,以及集成了立體聲耳機放大器、D類揚聲器放大器及I2C控制的新的音頻子系統方案——音頻管理集成電路(AMIC)。
  • D類音頻前置運算放大器的噪聲分析與設計
    D類音頻功率放大器中,前置運算放大器是一個比較重要的模塊,它位於整個拓撲結構中的前面,完成輸入信號源的加工處理,或者實現放大增益的設置,或者實現阻抗變換的目的,使其和後面功率放大級的輸入靈敏度相匹配
  • 音頻放大器的額定功率
    1 引言本文引用地址:http://www.eepw.com.cn/article/89364.htm  1.1 額定功率基準和基本定義  關於音頻放大器額定功率的定義,目前已有多種標準。  對於音頻信號,其電壓採用Vrms(均方根)表示,計算功率時,通常採用1 000 Hz的基準頻率,負載採用阻性負載,因此計算得到的功率為放大器所能承受的平均功率。
  • 應用可攜式設備中的D類音頻放大器介紹
    /回放等任務,管理MP3數位音樂流,並提供基本的警報聲,有時設計需要升級到更強大的音頻性能,這可以通過數字音頻架構實現採用D類放大器。 D類放大器由開關功率放大器架構組成,利用脈衝寬度調製(PWM)產生輸出波形;在音頻應用中,它們的輸出然後通過LC濾波器饋送,以在被饋送到揚聲器或其他輸出設備之前將其轉換回模擬形式。圖4顯示了一個簡單的D類信號圖。
  • 一種音頻小信號功率放大器信號放大電路設計淺析
    0 前言 音頻功率放大器的作用是將微弱的聲音電信號放大為功率或幅度足夠大、且與原來信號變化規律一致的信號,即進行不失真的放大。音頻功率放大器應用最廣的是音響技術領域,用於揚聲器的發聲,是音響設計與製作中必不可少的一部分。 本設計根據這種原理對比較小的音頻信號進行放大,使其功率增加,然後輸出。前級放大主要完成對小信號的放大,使用一個由電阻和電容組成的電路對輸入的音頻小信號的電壓進行放大,得到後一級所需的輸入。後一級主要是對音頻進行功率放大,使其能夠驅動電阻而得到需要的音頻。
  • 音頻放大器背景介紹及其分類等基礎知識
    所有這些可攜式的電子設備的一個共同點,就是都有音頻輸出,也就是都需要有一個音頻放大器;另一個特點就是它們都是電池供電的。都希望能夠有較長的使用壽命。就是在這種需求的背景下,D類放大器被開發出來了。它的最大特點就是它能夠在保持最低的失真情況下得到最高的效率。 高效率的音頻放大器不只是在可攜式的設備中需要,在大功率的電子設備中也需要。因為,功率越大,效率也就越重要。
  • 音頻功率放大器的使用
    圖2-25所示是音頻功率放大器在整個放大系統中的位置示意圖。與音頻功率放大器前、後連接的電路是:負載為揚聲器電路,輸入信號Ui來自音量電位器RP1動片的輸出信號。 2.音頻功率放大器中各單元電路作用 (1)電壓放大級。用來對輸入信號進行電壓放大,使加到推動級的信號電壓達到一定的程度。根據機器對音頻輸出功率要求的不同,電壓放大器的級數不等,可以只有一級電壓放大器,也可以是採用多級電壓放大器。 (2)推動級。
  • 功率放大器分類及D類功率放大器的工作原理
    功放則不一樣,功放要求獲得一定的不失真的輸出功率,通常是在大信號狀態下工作,所以要輸出功率大,效率要高,非線性失真要小。還有一個嚴肅的問題是散熱問題。 功率放大器,是指在給定失真率條件下,能產生最大功率輸出以驅動某一負載的放大器。
  • 一種24V電源電流型PWM控制器設計
    電流型PWM是在脈寬比較器的輸入端,直接用流過輸出電感線圈電流的信號與誤差放大器輸出信號進行比較,從而調節佔空比,使輸出的電感峰值電流跟隨誤差電壓變化而變化。由於結構上有電壓環、電流環雙環系統,因此,無論開關電源的電壓調整率、負載調整率和瞬態響應特性都有提高,是目前比較理想的新型PWM控制器。
  • 2.5W D類音頻放大器AAT5101的功能特點及應用範圍
    AnalogicTech推出的D類音頻放大器。憑藉研諾在便攜應用電源管理晶片領域內的豐富經驗,通過將低電壓運行與低靜態電流、低於競爭產品數量級的待機電流相結合,編號為AAT5101的2.5W D類音頻放大器可很大程度地節省功率。
  • 改進型差動輸入級音頻功率放大器分析與測試
    我於幾年前寫了4篇文章,講述功率放大器的設計,面向工程應用,理論聯繫實際,通過大量詳實具體的電路實驗,通俗易懂地介紹音頻功率放大器的設計理念與製作細節,並以大量的電路資料向讀者展現功率放大電路「從小到大,由簡至繁」的演化過程,充滿了關於音頻功放設計的真知灼見——這是第4篇——差動輸入級音頻功率放大器分析與測試。
  • 基於LabVIEW測試音頻功率放大器
    摘要:本文介紹了將虛擬儀器技術引入到音頻分析儀器的設計,採用LabVIEW編寫程序。通過測試典型的音頻放大器,檢測虛擬式音頻放大器測試的實用效果,測量音頻信號的電壓與頻率、時域幅值分析、頻域分析、失真分析和信噪比等。
  • 手機常用音頻放大器介紹
    超動態、全景立體聲場、雙揚聲器、寬廣音域、智能優化等,成為智慧型手機音頻品質好壞的重要評判標準。 手機常用音頻放大器介紹 簡單介紹目前手機設計中音頻放大器有AB類放大器也有D類,主要的生產廠家有美國國家半導體公司(NS)、美國德州儀器(TI)、意法半導體公司 (ST)、美國安森美公司(ONSEMI)。他們代表性的產品及其性能比較如表1 和表2所示。
  • 簡易音頻放大器電路圖大全(九款簡易音頻放大器電路設計原理圖詳解)
    根據應用的不同,功率大小差異很大,從耳機的毫瓦級到TV或PC音頻的數瓦,再到「迷你」家庭立體聲和汽車音響的幾十瓦,直到功率更大的家用和商用音響系統的數百瓦以上,大到能滿足整個電影院或禮堂的聲音要求。   音頻放大器的發展先後經歷了電子管(真空管)、雙極型電晶體、場效應管三個時代。
  • 功率放大器的性能指標,功率放大器的應用
    由於考慮功率、阻抗、失真、動態以及不同的使用範圍和控制調節功能,不同的功放在內部的信號處理、線路設計和生產工藝上也各不相同。  (二)、頻率響應  頻率響應反映功率放大器對音頻信號各頻率分量的放大能力,功率放大器的頻響範圍應不底於人耳的聽覺頻率範圍,因而在理想情況下,主聲道音頻功率放大器的工作頻率範圍為20-20kHz。國際規定一般音頻功放的頻率範圍是40-16 kHz±1.5dB。
  • 「簡潔至上」的電晶體甲類音頻功率放大器
    電路結構與特點  該電晶體甲類音頻功率放大器電路及電源電路如圖1所示。這一功放電路具有高達15W的有效值輸出功率,它只用兩隻電晶體,並把它們直接相連,複合成一隻高跨導的功率場效應電晶體。這是筆者受到絕緣柵雙極型電晶體(IGBT)的啟發偶爾想到的。
  • 關於低頻功率放大器的介紹
    打開APP 關於低頻功率放大器的介紹 發表於 2019-06-24 17:42:02 低頻功率放大器,它是用來放大低頻信號功率的
  • 常用音頻放大器的幾種類型
    常用音頻放大器的幾種類型音頻功率放大器種類繁多,常用的有A類、B類、AB類、C類、D類、E類、F類、G類、H類、S類等十餘種,但適合於音頻應用的只有A類、B類、AB類和D類等四種。AB類放大器AB類功放是在B類功放的輸入端插入兩個二極體,當輸入接近零時,放大管已經微導通,從而使每個放大管導通角大於180℃而小於360℃。AB類功放克服了B類功放的交越失真,效率處在A類、B類功放之間,是傳統線性功放常採用的結構。然而,中等輸出的電壓通常遠離電源電壓,有很大的功耗消耗在電晶體上,所以,即使是精心設計的AB類功放,其效率還不是很高。
  • NCP2820 音頻功率放大器 D類 2.65 W 無濾波器 單聲道
    NCP2820是一款經濟高效的單聲道D類音頻功率放大器,能夠從5V電源向4歐姆橋式負載提供2.65W的連續平均功率。在相同條件下,輸出功率級可為8歐姆BTL負載提供1.4W,THD + N小於1%。對於蜂窩手機或PDA,它提供了成本和成本節省,因為使用電感式傳感器時不需要輸出濾波器。效率超過90%,關斷電流非常低,可延長電池壽命,大幅降低結溫。