介紹在SMPS應用中選擇IGBT和MOSFET的比較

2020-11-30 電子產品世界

隨著電力電子技術的高速發展,電力電子設備與人們的工作、生活的關係日益密切,而電子設備都離不開可靠的電源,進入80年代計算機電源全面實現了開關電源化,率先完成計算機的電源換代,進入90年代開關電源相繼進入各種電子、電器設備領域,程控交換機、通訊、電子檢測設備電源、控制設備電源等都已廣泛地使用了開關電源,更促進了開關電源技術的迅速發展。開關電源是利用現代電力電子技術,控制開關電晶體開通和關斷的時間比率,維持穩定輸出電壓的一種電源,開關電源一般由脈衝寬度調製(PWM)控制IC和MOSFET構成。開關電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電源成本在某一輸出功率點上,反而高於開關電源,這一成本反轉點。隨著電力電子技術的發展和創新,使得開關電源技術在不斷地創新,這一成本反轉點日益向低輸出電力端移動,這為開關電源提供了廣泛的發展空間。

本文引用地址:http://www.eepw.com.cn/article/174993.htm

開關電源高頻化是其發展的方向,高頻化使開關電源小型化,並使開關電源進入更廣泛的應用領域,特別是在高新技術領域的應用,推動了高新技術產品的小型化、輕便化。另外開關電源的發展與應用在節約能源、節約資源及保護環境方面都具有重要的意義。

SMPS的進展

一直以來,離線式SMPS產業由功率半導體產業的功率元件發展所推動。作為主要的功率開關器件IGBT、功率MOSFET和功率二極體正不斷改良,相應地也是明顯地改善了SMPS的效率,減小了尺寸,重量和成本也隨之降低。由於器件對應用性能的這種直接影響,SMPS設計人員必須比較不同半導體技術的各種優缺點以優化其設計。例如,MOSFET一般在較低功率應用及較高頻應用(即功率《1000W及開關頻率≥100kHz)中表現較好,而 IGBT則在較低頻及較高功率設計中表現卓越。

導通損耗

除了IGBT的電壓下降時間較長外,IGBT和功率MOSFET的導通特性十分類似。由基本的IGBT等效電路(見圖1)可看出,完全調節PNP BJT集電極基極區的少數載流子所需的時間導致了導通電壓拖尾(voltage tail)出現。

圖1 IGBT等效電路

這種延遲引起了類飽和 (Quasi-saturation) 效應,使集電極/發射極電壓不能立即下降到其VCE(sat)值。這種效應也導致了在ZVS情況下,在負載電流從組合封裝的反向並聯二極體轉換到 IGBT的集電極的瞬間,VCE電壓會上升。IGBT產品規格書中列出的Eon能耗是每一轉換周期Icollector與VCE乘積的時間積分,單位為焦耳,包含了與類飽和相關的其他損耗。其又分為兩個Eon能量參數,Eon1和Eon2。Eon1是沒有包括與硬開關二極體恢復損耗相關能耗的功率損耗; Eon2則包括了與二極體恢復相關的硬開關導通能耗,可通過恢復與IGBT組合封裝的二極體相同的二極體來測量,典型的Eon2測試電路如圖2所示。

圖2 典型的導通能耗Eon和關斷能耗Eoff 測試電路

開關電源 (Switch Mode Power Supply;SMPS) 的性能在很大程度上依賴於功率半導體器件的選擇,即開關管和整流器。雖然沒有萬全的方案來解決選擇IGBT還是MOSFET的問題,但針對特定SMPS應用中的IGBT 和 MOSFET進行性能比較,確定關鍵參數的範圍還是能起到一定的參考作用。本文將對一些參數進行探討,如硬開關和軟開關ZVS (零電壓轉換) 拓撲中的開關損耗,並對電路和器件特性相關的三個主要功率開關損耗—導通損耗、傳導損耗和關斷損耗進行描述。

在硬開關導通的情況下,柵極驅動電壓和阻抗以及整流二極體的恢復特性決定了Eon開關損耗。對於像傳統CCM升壓PFC電路來說,升壓二極體恢復特性在Eon (導通) 能耗的控制中極為重要。除了選擇具有最小Trr和QRR的升壓二極體之外,確保該二極體擁有軟恢復特性也非常重要。

在硬開關電路中,如全橋和半橋拓撲中,與IGBT組合封裝的是快恢復管或MOSFET體二極體,當對應的開關管導通時二極體有電流經過,因而二極體的恢復特性決定了Eon損耗。

一般來說,IGBT組合封裝二極體的選擇要與其應用匹配,具有較低正向傳導損耗的較慢型超快二極體與較慢的低VCE(sat)電機驅動IGBT組合封裝在一起。相反地,軟恢復超快二極體,可與高頻SMPS2開關模式IGBT組合封裝在一起。

除了選擇正確的二極體外,設計人員還能夠通過調節柵極驅動導通源阻抗來控制Eon損耗。Eon損耗和EMI需要折中,因為較高的di/dt 會導致電壓尖脈衝、輻射和傳導EMI增加。為選擇正確的柵極驅動阻抗以滿足導通di/dt 的需求,可能需要進行電路內部測試與驗證,然後根據MOSFET轉換曲線可以確定大概的值 (見圖3)。

圖3 MOSFET的轉移特性

假定在導通時,FET電流上升到10A,根據圖3中25℃的那條曲線,為了達到10A的值,柵極電壓必須從5.2V轉換到6.7V,平均GFS為10A/(6.7V-5.2V)=6.7mΩ。

公式1 獲得所需導通di/dt的柵極驅動阻抗

把平均GFS值運用到公式1中,得到柵極驅動電壓Vdrive=10V,所需的 di/dt=600A/μs,FCP11N60典型值VGS(avg)=6V,Ciss=1200pF;於是可以計算出導通柵極驅動阻抗為37Ω。由於在圖3的曲線中瞬態GFS值是一條斜線,會在Eon期間出現變化,意味著di/dt也會變化。

同樣的,IGBT也可以進行類似的柵極驅動導通阻抗計算,VGE(avg) 和 GFS可以通過IGBT的轉換特性曲線來確定,並應用VGE(avg)下的CIES值代替Ciss。計算所得的IGBT導通柵極驅動阻抗為100Ω,該值比前面的37Ω高,表明IGBT GFS較高,而CIES較低。

傳導損耗需謹慎

在比較額定值為600V的器件時,IGBT的傳導損耗一般比相同晶片大小的600 V MOSFET少。這種比較應該是在集電極和漏極電流密度可明顯感測,並在指明最差情況下的工作結溫下進行的。圖4顯示了在125℃的結溫下傳導損耗與直流電流的關係,圖中曲線表明在直流電流大於2.92A後, MOSFET的傳導損耗更大。

圖4 傳導損耗直流工作

電荷放大器相關文章:電荷放大器原理 調光開關相關文章:調光開關原理

相關焦點

  • 在SMPS應用中選擇IGBT和MOSFET的比較
    關斷損耗 —問題尚未結束  在硬開關、鉗位感性電路中,MOSFET的關斷損耗比IGBT低得多,原因在於IGBT 的拖尾電流,這與清除圖1中PNP BJT的少數載流子有關。圖7顯示了集電極電流ICE和結溫Tj的函數Eoff,其曲線在大多數IGBT數據表中都有提供。
  • TLP250功率驅動模塊在IRF840 MOSFET中的應用(圖)
    摘 要:介紹了功率器件驅動模塊tlp250的結構和使用方法,給出了其與功率mosfet和dsp控制器接口的硬體電路圖。功率mosfet是一種多子導電的單極型電壓控制器件,具有開關速度快、高頻特性好、熱穩定性優良、驅動電路簡單、驅動功率小、安全工作區寬、無二次擊穿問題等顯著優點。目前,功率mosfet的指標達到耐壓600v、電流70a、工作頻率100khz的水平,在開關電源、辦公設備、中小功率電機調速中得到廣泛的應用,使功率變換裝置實現高效率和小型化。
  • igbt驅動電壓和功率分別是多少
    在此根據長期使用IGBT的經驗並參考有關文獻對 IGBT驅動的電壓和功率做了一些總結,希望對廣大網友能夠提供幫助。   igbt驅動工作原理   驅動器功率不足或選擇錯誤可能會直接導致 IGBT 和驅動器損壞。以下總結了一些關於IGBT驅動器輸出性能的計算方法以供選型時參考。
  • MOS管,IGBT,以及三極體他們有什麼區別?正向單流柵極IGBT驅動電路...
    mos管、igbt、三極體比較,mos開關速度最快,三極體最慢,而igbt內部是靠mos管先開通驅動三極體開通(這個原理決定了它的開關速度比mos慢,比三極體快,和幾代技術無關)。mos管的最大劣勢是隨著耐壓升高,內阻迅速增大(不是線性增大),所以高壓下內阻很大,不能做大功率應用。隨著技術發展,無論mos管還是igbt管,它們的各種參數仍在優化。
  • IGBT入門、電路圖、應用方案、技術資料大全
    42# EEPW網友 說:2018-09-26 16:40 真牛逼 41# EEPW網友 說:2017-04-04 22:02 一般的igbt
  • 超級結MOSFET和IGBT在電動汽車充電樁的應用
    充電(應用)要求在高溫環境下具有高電壓、高電流和高性能,開發高能效、高性能、具豐富保護功能的充電樁對於實現以儘可能短的充電時間續航更遠的裡程至關重要。常用的半導體器件有IGBT、超結MOSFET和碳化矽(SiC)。
  • MOSFET靠什麼進軍IGBT的應用領域?
    兩個主要類型的功率電晶體:MOSFET和IGBT非常流行,它們在電源系統設計中已經使用了多年,因此,很容易假定它們之間的差異一直保持不變。本文通過解釋最新一代MOSFET和IGBT的工作特性,使用戶能夠更好地了解最能滿足應用需求的最合適的器件類型,並解釋了目前的功率電晶體選擇的灰色區域。
  • 比較1200V碳化矽MOSFET和Si IGBT的主要特色
    兩者的比較是以應用為基礎,例如600 V匯流排直流電壓,開啟和關閉的dv/dt均設定為5 V/ns。   圖6為實驗期間所測得數據之摘要。跟矽基IGBT相比,在本實驗分析的電流範圍以內,碳化矽MOSFET的開啟和關閉能耗都明顯較低(約減少50%),甚至在5 V/ns的狀況下亦然。
  • 簡要介紹MOSFET和IGBT基礎知識
    打開APP 簡要介紹MOSFET和IGBT基礎知識 Bill Schweber, Mouser 發表於 2019-08-28 15:45:05
  • igbt主要材料及參數介紹
    打開APP igbt主要材料及參數介紹 發表於 2017-12-14 15:56:20   IGBT是能源變換與傳輸的核心器件,俗稱電力電子裝置的「CPU」,作為國家戰略性新興產業,在軌道交通、智能電網、航空航天、電動汽車與新能源裝備等領域應用極廣。
  • 如何選擇合適的LED大燈驅動方案
    LED大燈的方案有千百種,如何選擇性價比高的大燈晶片方案?本文我們將和大家一起探討。首先我們要保證驅動LED 的電流要恆定;其次LED大燈的功率是比較大的,尤其是遠光和近光,LED的電流大多在1A左右,輸出電壓由客戶LED的顆數和Vf值決定。綜合以上兩個原因,我們要考慮選用能輸出較大功率的恆流DC 燈驅來設計。
  • 詳解MOSFET與IGBT的本質區別
    3、就其應用,根據其特點:MOSFET應用於開關電源,鎮流器,高頻感應加熱,高頻逆變焊機,通信電源等等高頻電源領域;IGBT集中應用於焊機,逆變器,變頻器,電鍍電解電源,超音頻感應加熱等領域。開關電源 (Switch Mode Power Supply;SMPS) 的性能在很大程度上依賴於功率半導體器件的選擇,即開關管和整流器。
  • 大功率IGBT中濾波電容的選擇與計算
    本文就將從幾個不同的方面來進行介紹。本文引用地址:http://www.eepw.com.cn/article/201808/386270.htm第一、濾波電容的功能由於IGBT柵極的寄生電容比較大,柵極電壓變化時就會需要很大的柵極充放電電流,而IGBT驅動器的功能就是放大驅動信號並提供這個電流。
  • 利用英飛凌IGBT單管設計手提式焊機
    在單管IGBT中,尤其以TO-247封裝650V單管產品為主流,各大廠商都推出了相應的適用於焊機應用的產品,其中英飛凌的上一代600V H3和T系列產品已經在焊機市場上佔有很大的份額,英飛凌最新一代的TrenchstopTM 5系列產品中,H5(適合開關頻率30-70KHz)和S5(適合開關頻率15-40KHz)系列產品又在上一代600V IGBT晶片技術上進一步性能優化,設計也逐漸佔據焊機市場主流
  • MOSFET與MOSFET驅動電路原理及應用
    包括MOS管的介紹,特性,驅動以及應用電路。 本文引用地址:http://www.eepw.com.cn/article/166816.htm在使用MOS管設計開關電源或者馬達驅動電路的時候,大部分人都會考慮MOS的導通電阻,最大電壓等,最大電流等,也有很多人僅僅考慮這些因素。
  • 淺談矽IGBT與碳化矽MOSFET驅動的區別
    矽IGBT的承受退保和短路的時間一般大於10μs,在設計矽IGBT的短路保護電路時,建議將短路保護的檢測延時和相應時間設置在5-8μs較為合適。2)低傳輸延遲通常情況下,矽IGBT的應用開關頻率小於40kHZ,碳化矽MOSFET推薦應用開關頻率大於100kHz,應用頻率的提高使得碳化矽MOSFET要求驅動器提供更低的信號延遲時間。
  • 以後再不要小看igbt吸收電容在電路中的作用啦,勿因小失大!
    打開APP 以後再不要小看igbt吸收電容在電路中的作用啦,勿因小失大!2018-12-13 14:51:44 選擇不好的吸收電容影響
  • 隔離驅動IGBT和Power MOSFET等功率器件所需的技巧
    功率器件,如IGBT,Power MOSFET和Bipolar Power Transistor等等,都需要有充分的保護,以避免如欠壓,缺失飽和,米勒效應,過載,短路等條件所造成的損害。這裡介紹了為何光耦柵極驅動器能被廣泛的接受和使用,這不僅是因其所具有的高輸出電流驅動能力,及開關速度快等長處之外,更重要的,它也具有保護功率器件的所需功能。