igbt驅動電壓和功率分別是多少

2020-11-26 電子發燒友

  在此根據長期使用IGBT的經驗並參考有關文獻對 IGBT驅動的電壓和功率做了一些總結,希望對廣大網友能夠提供幫助。

  igbt驅動工作原理

  驅動器功率不足或選擇錯誤可能會直接導致 IGBT 和驅動器損壞。以下總結了一些關於IGBT驅動器輸出性能的計算方法以供選型時參考。

  igbt驅動電路是驅動igbt模塊以能讓其正常工作,並同時對其進行保護的電路。

  絕緣柵雙極型電晶體(IGBT)在今天的電力電子領域中已經得到廣泛的應用,在實際使用中除IGBT自身外,IGBT 驅動器的作用對整個換流系統來說同樣至關重要。驅動器的選擇及輸出功率的計算決定了換流系統的可靠性。因此,在IGBT數據手冊中給出的電容Cies值在實際應用中僅僅只能作為一個參考值使用。

  IGBT的開關特性主要取決於IGBT的門極電荷及內部和外部的電阻

  igbt驅動電壓要求

  因 IGBT 柵極 - 發射極阻抗大,故可使用 MOSFET 驅動技術進行驅動,但 IGBT 的輸入電容較 MOSFET 大,所以 IGBT 的驅動偏壓應比 MOSFET 驅動所需偏壓強。圖 1 是一個典型的例子。在 +20 ℃情況下,實測 60 A , 1200 V 以下的 IGBT 開通電壓閥值為 5 ~ 6 V ,在實際使用時,為獲得最小導通壓降,應選取 Ugc ≥ (1.5 ~ 3)Uge(th) ,當 Uge 增加時,導通時集射電壓 Uce 將減小,開通損耗隨之減小,但在負載短路過程中 Uge 增加,集電極電流 Ic 也將隨之增加,使得 IGBT 能承受短路損壞的脈寬變窄,因此 Ugc 的選擇不應太大,這足以使 IGBT 完全飽和,同時也限制了短路電流及其所帶來的應力 ( 在具有短路工作過程的設備中,如在電機中使用 IGBT 時, +Uge 在滿足要求的情況下儘量選取最小值,以提高其耐短路能力 ) 。

  igbt驅動對電源的要求

  對於全橋或半橋電路來說,上下管的驅動電源要相互隔離,由於 IGBT 是電壓控制器件,所需要的驅動功率很小,主要是對其內部幾百至幾千皮法的輸入電容的充放電,要求能提供較大的瞬時電流,要使 IGBT 迅速關斷,應儘量減小電源的內阻,並且為防止 IGBT 關斷時產生的 du/dt 誤使 IGBT 導通,應加上一個 -5 V 的關柵電壓,以確保其完全可靠的關斷 ( 過大的反向電壓會造成 IGBT 柵射反向擊穿,一般為 -2 ~ 10 V 之間 ) 。

  igbt驅動對驅動波形的要求

  從減小損耗角度講,門極驅動電壓脈衝的上升沿和下降沿要儘量陡峭,前沿很陡的門極電壓使 IGBT 快速開通,達到飽和的時間很短,因此可以降低開通損耗,同理,在 IGBT 關斷時,陡峭的下降沿可以縮短關斷時間,從而減小了關斷損耗,發熱量降低。但在實際使用中,過快的開通和關斷在大電感負載情況下反而是不利的。因為在這種情況下, IGBT 過快的開通與關斷將在電路中產生頻率很高、幅值很大、脈寬很窄的尖峰電壓 Ldi/dt ,並且這種尖峰很難被吸收掉。此電壓有可能會造成 IGBT 或其他元器件被過壓擊穿而損壞。所以在選擇驅動波形的上升和下降速度時,應根據電路中元件的耐壓能力及 du/dt 吸收電路性能綜合考慮。


  igbt驅動對驅動功率的要求

  由於 IGBT 的開關過程需要消耗一定的電源功率,最小峰值電流可由下式求出:

  I GP = △ U ge /R G +R g ;

  式中△ Uge=+Uge+|Uge| ; RG 是 IGBT 內部電阻; Rg 是柵極電阻。

  驅動電源的平均功率為:

  P AV =C ge △ Uge 2 f,

  式中. f 為開關頻率; Cge 為柵極電容。

  對柵極布線要求

  合理的柵極布線對防止潛在震蕩,減小噪聲幹擾,保護 IGBT 正常工作有很大幫助。

  a .布線時須將驅動器的輸出級和 lGBT 之間的寄生電感減至最低 ( 把驅動迴路包圍的面積減到最小 ) ;

  b .正確放置柵極驅動板或屏蔽驅動電路,防止功率電路和控制電路之間的耦合;

  c .應使用輔助發射極端子連接驅動電路;

  d .驅動電路輸出不能和 IGBT 柵極直接相連時,應使用雙絞線連接 (2 轉/ cm) ;

  e .柵極保護,箝位元件要儘量靠近柵射極。

  三種IGBT驅動電路

  驅動電路EXB841/840

  EXB841 工作原理如圖1,當EXB841的14腳和15腳有10mA的電流流過1us以後IGBT正常開通,VCE下降至3V左右,6腳電壓被 鉗制在8V左右,由於VS1穩壓值是13V,所以不會被擊穿,V3不導通,E點的電位約為20V,二極體VD截止,不影響V4和V5正常工作。

  

  當 14腳和15腳無電流流過,則V1和V2導通,V2的導通使V4截止、V5導通,IGBT柵極電荷通過V5迅速放電,引腳3電位下降至0V,是 IGBT柵一 射間承受5V左右的負偏壓,IGBT可靠關斷,同時VCE的迅速上升使引腳6「懸空」。C2的放電使得B點電位為0V,則V S1仍然不導通,後續電路不動作,IGBT正常關斷。

  如有過流發生,IGBT的V CE過大使得VD2截止,使得VS1擊穿,V3導通,C4通過R7放電,D點電位下降,從而使IGBT的柵一射間的電壓UGE降低 ,完成慢關斷,實現對IGBT的保護。由EXB841實現過流保護的過程可知,EXB841判定過電流的主要依據是6腳的電壓,6腳的電壓不僅與VCE 有關,還和二極體VD2的導通電壓Vd有關。

  

  典型接線方法如圖2,使用時注意如下幾點:

  a、IGBT柵-射極驅動迴路往返接線不能太長(一般應該小於1m),並且應該採用雙絞線接法,防止幹擾。

  b、由於IGBT集電極產生較大的電壓尖脈衝,增加IGBT柵極串聯電阻RG有利於其安全工作。但是柵極電阻RG不能太大也不能太小,如果 RG增大,則開通關斷時間延長,使得開通能耗增加;相反,如果RG太小,則使得di/dt增加,容易產生誤導通。

  c、圖中電容C用來吸收由電源連接阻抗引起的供電電壓變化,並不是電源的供電濾波電容,一般取值為47 F。

  d、6腳過電流保護取樣信號連接端,通過快恢復二極體接IGBT集電極。

  e、14、15接驅動信號,一般14腳接脈衝形成部分的地,15腳接輸入信號的正端,15端的輸入電流一般應該小於20mA,故在15腳前加限流電阻。

  f、為了保證可靠的關斷與導通,在柵射極加穩壓二極體。

  M57959L/M57962L厚膜驅動電路

  M57959L/M57962L厚膜驅動電路採用雙電源(+15V,- 10V)供電,輸出負偏壓為-10V,輸入輸出電平與TTL電平兼容,配有短 路/過載保護和 封閉性短路保護功能,同時具有延時保護特性。其分別適合於驅動1200V/100A、600V/200A和1200V/400A、600V/600A及其 以下的 IGBT.M57959L/M57962L在驅動中小功率的IGBT時,驅動效果和各項性能表現優良,但當其工作在高頻下時,其脈衝前後沿變的較差,即信 號的最大傳輸寬度受到限制。且厚膜內部採用印刷電路板設計,散熱不是很好,容易因過熱造成內部器件的燒毀。

  日本三菱公司的M57959L集成IGBT專用驅動晶片它可以作為600V/200A或者1200V/100A的IGBT驅動。其最高頻率也達40KHz,採用雙電源 供電(+15V和-15V)輸出電流峰值為±2A,M57959L有以下特點:

  (1) 採用光耦實現電器隔離,光耦是快速型的,適合20KHz左右的高頻開關運行,光耦的原邊已串聯限流電阻,可將5V電壓直接加到輸入 側。

  (2) 如果採用雙電源驅動技術,輸出負柵壓比較高,電源電壓的極限值為+18V/-15V,一般取+15V/-10V。

  (3) 信號傳輸延遲時間短,低電平-高電平的傳輸延時以及高電平-低電平的傳輸延時時間都在1.5μs以下。

  (4) 具有過流保護功能。M57962L通過檢測IGBT的飽和壓降來判斷IGBT是否過流,一旦過流,M57962L就會將對IGBT實施軟關斷,並輸出過 流故障信號。

  (5) M57959的內部結構如圖所示,這一電路的驅動部分與EXB系列相仿,但是過流保護方面有所不同。過流檢測仍採用電壓採樣,電路特 點是採用柵壓緩降,實現IGBT軟關斷。

  避免了關斷中過電壓和大電流衝擊,另外,在關斷過程中,輸入控制信號的狀態失去作用,既保護關斷是在封閉狀態中完成的。當保護開始時,立即送出故障信號,目的是切斷控制信號,包括電路中其它有源器件。

  

  SD315A集成驅動模塊

  集成驅動模塊採用+15V單電源供電,內部集成有過流保護電路,其最大的特點是具 有安全性、智能性與易用性。2SD315A能輸出很大的峰 值電流(最大瞬時輸出電流可達±15A),具有很強的驅動能力和很高的隔離電壓能力(4000V)。2SD315A具有兩個驅動輸出通道,適合於驅 動等級為1200V/1700V極其以上的兩個單管或一個半橋式的雙單元大功率IGBT模塊。其中在作為半橋驅動器使用的時候,可以很方便地 設置死區時間。

  2SD315A內部主要有三大功能模塊構成,分別是LDI(Logic To Driver Interface,邏輯驅動轉換接口)、IGD(Intelligent Gate Driver,智能門極驅動)和輸入與輸出相互絕緣的DC/DC轉換器。當外部輸入PWM信號後,由LDI進行編碼處理,為保證信號不受外界條件的 幹擾,處理過的信號在進入IGD前需用高頻隔離變壓器進行電氣隔離。從隔離變壓器另一側 接收到的信號首先在IGD單元進行解碼,並把解碼後的PWM信號進行放大(±15V/±15A)以驅動外接大功率IGBT。當智能門極驅動單元IGD內的 過流和短路保護電路檢測到IGBT發生過流和短路故障時,由封鎖時間邏輯電路和狀態確認電路產生相應的響應時間和封鎖時間,並把此時的狀態信號進行編碼送 到邏輯控制單元LDI。LDI單元對傳送來的IGBT工作狀態信號進行解碼處理,使之在控制迴路中得以處理。為防止2SD315A的兩路輸出驅動信號相互 幹擾,由DC/DC轉換器提供彼此隔離的電源供電。

  

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • MOS管,IGBT,以及三極體他們有什麼區別?正向單流柵極IGBT驅動電路...
    在低壓下 igbt相對mos管在電性能和價格上都沒有優勢,所以基本上看不到低壓igbt,並不是低壓的造不出來,而是毫無性價比。在600v以上,igbt的優勢才明顯,電壓越高,igbt越有優勢,電壓越低,mos管越有優勢。導通壓降,一般低壓mos管使用都控制在0.5v以下(基本不會超過1v的)。比如ir4110,內阻4毫歐姆,給它100a的導通電流,導通壓降是0.4v左右。
  • TLP250功率驅動模塊在IRF840 MOSFET中的應用(圖)
    摘 要:介紹了功率器件驅動模塊tlp250的結構和使用方法,給出了其與功率mosfet和dsp控制器接口的硬體電路圖。功率mosfet是一種多子導電的單極型電壓控制器件,具有開關速度快、高頻特性好、熱穩定性優良、驅動電路簡單、驅動功率小、安全工作區寬、無二次擊穿問題等顯著優點。目前,功率mosfet的指標達到耐壓600v、電流70a、工作頻率100khz的水平,在開關電源、辦公設備、中小功率電機調速中得到廣泛的應用,使功率變換裝置實現高效率和小型化。
  • 隔離驅動IGBT和Power MOSFET等功率器件所需的技巧
    功率器件,如IGBT,Power MOSFET和Bipolar Power Transistor等等,都需要有充分的保護,以避免如欠壓,缺失飽和,米勒效應,過載,短路等條件所造成的損害。這裡介紹了為何光耦柵極驅動器能被廣泛的接受和使用,這不僅是因其所具有的高輸出電流驅動能力,及開關速度快等長處之外,更重要的,它也具有保護功率器件的所需功能。
  • 隔離驅動IGBT和Power MOSFET等功率器件設計所需要的一些技巧
    功率器件,如IGBT,Power MOSFET和Bipolar Power Transistor等等,都需要有充分的保護,以避免如欠壓,缺失飽和,米勒效應,過載,短路等條件所造成的損害。本在線研討會介紹了為何光耦柵極驅動器能被廣泛的接受和使用,這不僅是因其所具有的高輸出電流驅動能力,及開關速度快等長處之外,更重要的,它也具有保護功率器件的所需功能。
  • IGBT入門、電路圖、應用方案、技術資料大全
    42# EEPW網友 說:2018-09-26 16:40 真牛逼 41# EEPW網友 說:2017-04-04 22:02 一般的igbt
  • igbt模塊怎麼測量好壞
    IGBT(Insulated Gate Bipolar Transistor),絕緣柵雙極型電晶體,是由BJT(雙極型三極體)和MOS(絕緣柵型場效應管)組成的複合全控型電壓驅動式功率半導體器件, 兼有MOSFET的高輸入阻抗和GTR的低導通壓降兩方面的優點。
  • 隔離驅動IGBT和Power MOSFET等功率器件所需的技巧二
    關閉,讓250uA恆流,以充電電容,和/或直接流到IGBT,這取決於那個路徑是處於較低電壓路徑。 因此,如果IGBT的開啟和負載配合的飽和點在2V,恆定電流會流入DESAT電容,直到它到達2.7V,並從那時起,恆定電流將流經DESAT二極體(造成0.7V壓降),並通過導通的IGBT。作為DESAT電容的電壓只有2.7V,這仍然是比7V DESAT閾值設置低,保護電路將不會被激活。
  • igbt工作原理視頻
    IGBT是什麼   IGBT即絕緣柵雙極型電晶體,是由BJT(雙極型三極體)和MOS(絕緣柵型場效應管)組成的複合全控型電壓驅動式功率半導體器件, 兼有MOSFET的高輸入阻抗和GTR的低導通壓降兩方面的優點。
  • 電壓驅動和電流驅動的區別
    簡介:本文介紹了在電子設計中關於IC晶片的電壓驅動和電流驅動的區別以及相應的問題和解決方法。今天看了上拉電阻和下拉電阻等講到了關於驅動能力,這裡介紹一下關於驅動能力的幾個問題。直接進入主題吧。  1、問:為什麼說驅動能力不夠是因為提供電流太小而不是電壓?如何分析驅動能力不夠?  答:首先我們看到的驅動能力不夠大部分是在你選擇的負載(電阻、喇叭等)電壓符合供電電壓的。那麼電壓符合了只要看電流大小是否足夠。
  • igbt的使用方法
    GTR飽和壓降低,載流密度大,但驅動電流較大;MOSFET驅動功率很小,開關速度快,但導通壓降大,載流密度小。IGBT綜合了以上兩種器件的優點,驅動功率小而飽和壓降低。非常適合應用於直流電壓為600V及以上的變流系統如交流電機、變頻器、開關電源、照明電路、牽引傳動等領域。
  • IGBT高壓大功率驅動和保護電路的應用及原理
    IGBT集雙極型功率電晶體和功率MOSFET的優點於一體,具有電壓控制、輸入阻抗大、驅動功率小、控制電路簡單、開關損耗小、通斷速度快和工作頻率高等優點。 但是,IGBT和其它電力電子器件一樣,其應用還依賴於電路條件和開關環境。因此,IGBT的驅動和保護電路是電路設計的難點和重點,是整個裝置運行的關鍵環節。
  • 基於IR2130驅動晶片的無刷直流電動機功率驅動電路設計
    2 IR2130驅動晶片的特點 IR2130可用來驅動母線電壓不高於600 V電路中的功率MOS門器件,其可輸出的最大正向峰值驅動電流為250 mA,而反向峰值驅動電流為500 mA。由於它內部設計有過流、過壓及欠壓保護、封鎖和指示網絡,可使用戶方便地用來保護被驅動的MOS門功率管。
  • IGBT高壓大功率驅動和保護電路的設計方案
    IGBT集雙極型功率電晶體和功率MOSFET的優點於一體,具有電壓控制、輸入阻抗大、驅動功率小、控制電路簡單、開關損耗小、通斷速度快和工作頻率高等優點。  但是,IGBT和其它電力電子器件一樣,其應用還依賴於電路條件和開關環境。因此,IGBT的驅動和保護電路是電路設計的難點和重點,是整個裝置運行的關鍵環節。
  • IGBT:功率半導體核心元器件
    IGBT即Insulated Gate Bipolar(絕緣柵雙極電晶體),屬於電壓控制器件,是由BJT和MOSFET組成的複合功率半導體器件,是半導體領域裡分立器件中特別重要的一個分支。IGBT結合了BJT和MOSFET的優點,既有MOSFET的開關速度快、輸入阻抗高、控制功率小、驅動電路簡單、開關損耗小的優點,又有BJT導通電壓低、通態電流大、損耗小的優點,在高壓、大電流、高速等方面是其他功率器件不能比擬的,因而是電力電子領域較為理想的開關器件,是未來應用發展的主要方向。
  • 三電平逆變器IGBT驅動電路電磁兼容研究
    1.1 功率半導體器件的開關噪聲 由圖2所示的逆變器系統結構圖可以看到,電網電壓經過三相不控整流電路後輸入三電平逆變器,經過逆變電路和濾波電路後為負載供電。不控整流電路中的功率二極體及逆變器電路中器件(IGBT)在開關過程中均存在較高的di/dt,可能通過線路或元器件的寄生電感引起瞬態電磁噪聲。
  • igbt主要材料及參數介紹
    在C、E兩極之間的P型區(包括P+和P-區)(溝道在該區域形成),稱為亞溝道區(Subchannel region)。而在漏區另一側的P+區稱為漏注入區(Drain injector),它是IGBT特有的功能區,與漏區和亞溝道區一起形成PNP雙極電晶體,起發射極的作用,向漏極注入空穴,進行導電調製,以降低器件的通態電壓。附於漏注入區上的電極稱為漏極(即集電極C)。
  • 碳化矽JFET助推功率轉換電路的設計方案
    與傳統的MOSFET器件相比,JFET不易發生故障,適合斷路器和限流應用。例如,如果你用1毫安的電流偏置一個JFET的柵極,並監控柵極電壓Vgs,見圖1,你可以監控器件的溫度,因為Vgs隨溫度線性降低。此屬性對於需要功率場效應管(Sic JFET)的功率模塊應用程式特別有用,它可以監視其自身的運行狀況。
  • 下橋臂IGBT驅動電路圖-原理圖
    IGBT下橋臂的驅動電路圖如圖3所示。 圖3中電源+5V、VB+、VB-(VB+與VB-的電壓均為25V)為器件提供工作電壓。與16引腳相連的電位符號IGBTBE和IGBT模塊下橋臂的發射極相連,與11引腳相連的IGBTBG1~3分別和下橋臂的門極相接,控制IGBT的導通和關斷。當14引腳DESAT的電壓高於7V檢測到過流信號或VCC欠壓時,6引腳FAULT為低電平,器件自動閉鎖所有輸出,用於保護IGBT模塊,同時向微處理器發出一個報警信號。
  • 淺談矽IGBT與碳化矽MOSFET驅動的區別
    矽IGBT與碳化矽MOSFET驅動兩者電氣參數特性差別較大,碳化矽MOSFET對於驅動的要求也不同於傳統矽器件,主要體現在GS開通電壓、GS關斷電壓、短路保護、信號延遲和抗幹擾幾個方面,具體如下:矽IGBT的承受退保和短路的時間一般大於10μs,在設計矽IGBT的短路保護電路時,建議將短路保護的檢測延時和相應時間設置在5-8μs較為合適。
  • 詳解IGBT驅動系統方案
    在過流時如採用一般的速度封鎖柵極電壓,過高的電流變化率會引起過電壓,為此需要採用軟關斷技術,因而掌握好IGBT的驅動和保護特性是十分必要的。本文引用地址:http://www.eepw.com.cn/article/249224.htm  IGBT是電壓控制型器件,在它的柵極-發射極間施加十幾V的直流電壓,只有μA級的漏電流流過,基本上不消耗功率。