巧用RC吸收電路降低開關管損耗

2021-01-08 電子發燒友
打開APP
巧用RC吸收電路降低開關管損耗

電子發燒友 發表於 2019-01-26 09:58:00

開關電源設計中,我們常常使用到一個電阻串聯一個電容構成的RC電路, RC電路性能會直接影響到產品性能和穩定性。本文將為大家介紹一種既能降低開關管損耗,且可降低變壓器的漏感和尖峰電壓的RC電路。

高頻開關電源在開關管關斷時,電壓和電流的重疊引起的損耗是開關電源損耗的主要部分,同時,由於電路中存在寄生電感和寄生電容,在功率開關管關斷時,電路中也會出現過電壓並且產生振蕩。如果尖峰電壓過高,就會損壞開關管。同時,振蕩的存在也會使輸出紋波增大。為了降低關斷損耗和尖峰電壓,需要在開關管兩端並聯RC緩衝電路以改善電路的性能。

圖1

圖1所示的是一個簡單的反激式開關電源電路,從圖中可以看出RC電路在圖中的出現過6次從RaCa—RfCf,每個RC電路的位置不同,作用也不一樣。本文介紹的是圖1中RbCb,RcCc構成的RC吸收電路。這兩個RC電路在圖中主要作用是:

l 減少導通或關斷損耗;

l 降低電壓或電流尖峰;

l 可以間接的改善EMI特性。

在設計RC吸收電路時,我們必須了解整個電源網絡的幾個重要參數,比如輸入電壓、輸入電流、尖峰電壓、尖峰電流等。在圖1所示當Q1關斷時,源極電壓開始上升到2Vdc,而電容Cb限制了源極(D)電壓的上升速度,同時減小了上升電壓和下降電流的重疊,從而減低了開關管Q1的損耗。而在下次開關關斷之前,Cb必須將已經充滿的電壓放完,放電路徑為Cb、Rb、Q1。

圖2 開關管源極(D)的Vds電壓波形

圖2-A表示的是開關管Q1沒有加RC吸收電路的Vds電壓波形,圖中明顯的看出,當開關管Q1斷開時,Vds電壓迅速上升至最高點,而後伴隨這震蕩下跌,震蕩頻率為20MHZ。

圖2-B表示的是開關管上加了RC吸收電路的Vds電壓波形,相對與圖2-A,在加了RC吸收電路後,開關管斷開瞬間,Vds電壓上升比較平緩,且在上升到最高電壓跌落時不會產生高頻震蕩,EMI特性也會偏好。

在感性負載中,開關器件關斷的瞬間,如果此時感性負載的磁通不為零,根據愣次定律便會產生一個自感電動勢,對外界辭放磁場儲能,為簡單起見,一般都採用RC吸收回路,將這部份能量以熱能的方式消耗掉。

設計RC吸收回路參數,需要先確定磁場儲能的大小,在反激變壓器中,磁場儲能由兩部份辭放,其中大部份是通過互感向二次側提供能量,只有漏感部份要通過RC迴路處理,需要測量勵磁電感,互感及漏感值,再求得RC迴路的初始電流值。

l R的取值,以開關所能承受的瞬時反壓,比初始電流值;此值過小則動態功耗過大,引值過大則達不到保護開關的作用;

l C的取值,則需要滿足在鉗位電平下能夠儲存磁能的一半,且滿足一定的dV/dt,C關斷緩衝,R開通限流,電阻的阻值基本可以按照;

R=(sqrt(Llk/Cj))/n 這個公式計算,功率根據實際情況選擇,C一般都在102——103之間選擇,選C時在考慮吸收效果的同時還需考慮EMI的相位和後面輸出電容的紋波電流應力,則有:

C=(Ip*Tf)/(2*2*Vdc)

Ip:峰值電流

Tf:集電極電流從初始值下降到零的時間

Vdc:輸入的直流電壓

R=Ton(min)/(3C)

Ton(min):開關管最小的導通時間

根據以上給出的公式,可以很方便地選擇出合適的RC吸收電路。但在設計時,應該根據整個電源設計的性能指標,通過實際調試才能得到真正合適的參數。有時候,為了達到系統的性能指標,犧牲一定的效率也是必要的。總之,在設計RC吸收電路參數時,必須綜合考慮性能和效率,最終選擇合適的RC參數。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • RC吸收電路的設計經驗分享
    開關電源設計中,我們常常使用到一個電阻串聯一個電容構成的RC電路, RC電路性能會直接影響到產品性能和穩定性。本文將為大家介紹一種既能降低開關管損耗,且可降低變壓器的漏感和尖峰電壓的RC電路。
  • 電源設計經驗:RC吸收電路
    開關電源設計中,我們常常使用到一個電阻串聯一個電容構成的RC電路, RC電路性能會直接影響到產品性能和穩定性。本文將為大家介紹一種既能降低開關管損耗,且可降低變壓器的漏感和尖峰電壓的RC電路。
  • 電源設計經驗:RC吸收電路篇
    高頻開關電源在開關管關斷時,電壓和電流的重疊引起的損耗是開關電源損耗的主要部分,同時,由於電路中存在寄生電感和寄生電容,在功率開關管關斷時,電路中也會出現過電壓並且產生振蕩。
  • 深入分析開關損耗的改善辦法
    關於開關電源的損耗問題一直困擾著無數工程師,結合電路來深入分析下開關損耗的改善辦法。 改善方法:恆流啟動方式啟動,啟動完成後關閉啟動電路降低損耗。 繞組的層與層之間的分布電容的充放電損耗(分布電容在開關MOS管關斷時充電,在開關MOS管開通時放電引起的損耗。)
  • 開關電源電磁兼容及RC吸收回路設計
    開關管開通和關斷理論上都是瞬間完成的,但實際情況開關管關斷時刻下降的電流和上升的電壓有重疊時間,所以會有較大的關斷損耗。為了使IGBT關斷過程電壓能夠得到有效的抑制並減小關斷損耗,通常都需要給IGBT主電路設置關斷緩衝電路。
  • 怎樣降低MOSFET損耗並提升EMI性能
    了解MOSFET的損耗組成並對其分析,有利於優化MOSFET損耗,提高模塊電源的功率;但是一味的減少MOSFET的損耗及其他方面的損耗,反而會引起更嚴重的EMI問題,導致整個系統不能穩定工作。所以需要在減少MOSFET的損耗的同時需要兼顧模塊電源的EMI性能。  二、開關管MOSFET的功耗分析
  • 減少開關電源變壓器損耗方法與開關電源變壓器的渦流損耗分析
    開關電源變壓器是加入了開關管的電源變壓器,在電路中除了普通變壓器的電壓變換功能,還兼具絕緣隔離與功率傳送功能一般用在開關電源等涉及高頻電路的場合。開關電源變壓器和開關管一起構成一個自激(或他激)式的間歇震蕩器,從而把輸入直流電壓調製成一個高頻脈衝電壓。
  • 看此文,DC-DC電路損耗難題秒解
    從ROMA的官網上,知道同步降壓電路的損耗是由六部分組成的,分別是:Pmos是場效應管導通損耗,Psw是場效應管開關損耗,Pdead_time是死區時間損耗,PGATE是MOSFET的柵極電荷損耗,PCOIL是輸出電感的DCR、直流電阻帶來的傳導損耗,PIC是開關電源晶片自身消化的功率。
  • 開關電源損耗計算
    分析輸出整流器的開關損耗則要複雜得多。整流器自身固有的特性在局部電路內會引發很多問題。 開通期間,過渡過程是由整流管的正向恢復特性決定的。正向恢復時間tfrr是二極體兩端加上正向電壓到開始流過正向電流時所用的時間。對於PN型快恢復二極體而言,這個時間是5~15ns。
  • rc振蕩電路詳解_rc振蕩電路工作原理
    打開APP rc振蕩電路詳解_rc振蕩電路工作原理 發表於 2018-01-22 19:55:47 對於RC振蕩電路來說,增大電阻R即可降低振蕩頻率,而增大電阻是無需增加成本的;而對於LC振蕩電路來說,一般產生的正弦波頻率較高,若要產生頻率較低的正弦振蕩,勢必要求振蕩迴路要有較大的電感和電容,這樣不但元件體積大、笨重、安裝不便,而且製造困難、成本高。因此,200kHz以下的正弦振蕩電路,一般採用振蕩頻率較低的RC振蕩電路。
  • MOS管功率損耗怎麼測?
    打開APP MOS管功率損耗怎麼測? 做開關電源,常用功率MOSFET。一般而言,MOS管制造商採用RDS(ON)參數來定義導通阻抗;對ORing FET應用來說,RDS(ON)也是最重要的器件特性。數據手冊定義RDS(ON)與柵極(或驅動)電壓VGS以及流經開關的電流有關,但對於充分的柵極驅動,RDS(ON)是一個相對靜態參數。 若設計人員試圖開發尺寸最小、成本最低的電源,低導通阻抗更是加倍的重要。
  • rcd吸收電路原理及設計詳解
    本文為大家介紹rcd吸收電路原理及設計。 rcd吸收電路原理 若開關斷開,蓄積在寄生電感中能量通過開關的寄生電容充電,開關電壓上升。其電壓上升到吸收電容的電壓時,吸收二極體導通,開關電壓被吸收二極體所嵌位,約為1V左右。寄生電感中蓄積的能量也對吸收電容充電。開關接通期間,吸收電容通過電阻放電。
  • 開關電源中電子輻照對功率雙極電晶體損耗分析
    應用電子輻照技術可以減小少子壽命, 降低功率雙極電晶體的儲存時間、下降時間, 提高開關速度, 且一致性、重複性好, 成品率高, 這是高反壓功率開關電晶體傳統製造工藝無法比擬的。為了降低功率雙極電晶體的損耗,本文採用了10 MeV 電子輻照來減小其關斷延遲時間, 提高開關電源轉換效率。
  • NPC三電平逆變器PWM時降低損耗的研究
    討論了這兩種損耗的計算方法,並提出一種降低開關損耗的PWM方法,即SLMPWM。給出了調製度和功率因數角變化時,傳統SPWM和SLMPWM策略的損耗分布區面。可見,在很大範圍內,PWM策略能將開關損耗降低約一半。
  • 淺談開關電源MOS管發熱的原因
    MOS管常加在輸入端柵極的電壓來控制輸出端漏極的電流,通過加在柵極上的電壓控制器件的特性,不會發生像三極體做開關時的因基極電流引起的電荷存儲效應。在開關電源中常用MOS管的漏極開路電路,漏極原封不動地接負載,叫開路漏極。開路漏極電路中不管負載接多高的電壓,都能夠接通和關斷負載電流,是理想的模擬開關器件。
  • 基於P I N管的開關限幅器仿真與設計
    文章主要介紹了PIN管射頻開關限幅的原理,設計了一個工作於220~270MHz,插入損耗小於0.5dB,隔離度大於60dB,駐波比小於1.5dB,功率容量300W,開關時間小於1μs的大功率開關限幅器。該開關限幅器具有小信號低損耗直通,大信號大衰減限幅的特點。利用ADS仿真軟體對其仿真,並對加工出來的開關限幅器進行了測試,結果驗證了各項指標滿足要求。
  • VMOS管開關電源電路圖
    打開APP VMOS管開關電源電路圖 網絡整理 發表於 2020-04-30 17:40:11   VMOS管開關電源電路圖
  • 8050三級管開關電路圖大全(七款8050三級管開關電路設計原理圖詳解)
    8050三級管開關電路圖(一) 1、用NPN三極體做開關電路控制led的電路圖: 2、 8050三級管開關電路圖(二) 8050三級管開關電路圖(三) 8050三級管開關電路圖(四) 這裡介紹一個根據8050與8550製作而成三極體小功放電路圖,改變而成的三管音頻放大器。 電路如圖所示,輸入極(9014)的基極工作電壓等於兩輸出極三極體三極體的中點電壓,一三極體般為電源電壓的一半,這個電壓的穩定由輸出三極體三極體的基極的兩個二極體二極體控制。
  • mos管開關電路_pwm驅動mos管開關電路圖分享
    打開APP mos管開關電路_pwm驅動mos管開關電路圖分享 發表於 2018-01-04 13:41:14 MOS管開關電路是利用一種電路,是利用MOS管柵極(g)控制MOS管源極(s)和漏極(d)通斷的原理構造的電路。
  • 開關電源系統-待機功耗測試&分析
    變壓器的損耗由於待機時有效工作頻率很低,並且一般限流點很小,磁通變化小,磁芯損耗很小,對待機影響不大,但繞組損耗是不可忽略的。變壓器繞組引起的損耗;繞組的層與層之間的分布電容的充放電損耗(分布電容在開關MOS管關斷時充電,在開關MOS管開通時放電引起的損耗。)