質量資格輔導資料:方差分析的基本思想

2020-11-30 建設工程教育網

  方差分析的基本思想

  1.方差分析的概念

  方差分析(ANOVA)又稱變異數分析或F檢驗,其目的是推斷兩組或多組資料的總體均數是否相同,檢驗兩個或多個樣本均數的差異是否有統計學意義。我們要學習的主要內容包括單因素方差分析即完全隨機設計或成組設計的方差分析和兩因素方差分析即配伍組設計的方差分析。

  2.方差分析的基本思想

  下面我們用一個簡單的例子來說明方差分析的基本思想:

  如某克山病區測得11例克山病患者和13名健康人的血磷值(mmol/L)如下,

  患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11

  健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87

  問該地克山病患者與健康人的血磷值是否不同?

  從以上資料可以看出,24個患者與健康人的血磷值各不相同,如果用離均差平方和(SS)描述其圍繞總均數的變異情況,則總變異有以下兩個

  (1)組內變異,即由於隨機誤差的原因使得各組內部的血磷值各不相等;

  (2)組間變異,即由於克山病的影響使得患者與健康人組的血磷值均數大小不等。

  而且:SS總=SS組間+SS組內 v總=v組間+v組內

  如果用均方(即自由度v去除離均差平方和的商)代替離均差平方和以消除各組樣本數不同的影響,則方差分析就是用組內均方去除組間均方的商(即F值)與1相比較,若F值接近1,則說明各組均數間的差異沒有統計學意義,若F值遠大於1,則說明各組均數間的差異有統計學意義。實際應用中檢驗假設成立條件下F值大於特定值的概率可通過查閱F界值表(方差分析用)獲得。

  3.方差分析的應用條件

  應用方差分析對資料進行統計推斷之前應注意其使用條件,包括:

  (1)可比性,若資料中各組均數本身不具可比性則不適用方差分析。

  (2)正態性,即偏態分布資料不適用方差分析。對偏態分布的資料應考慮用對數變換、平方根變換、倒數變換、平方根反正弦變換等變量變換方法變為正態或接近正態後再進行方差分析。

  (3)方差齊性,即若組間方差不齊則不適用方差分析。多個方差的齊性檢驗可用Bartlett法,它用卡方值作為檢驗統計量,結果判斷需查閱卡方界值表。

 建設工程教育網整理

相關焦點

  • 2011年質量專業資格輔導:協方差分析
    (一)協方差分析基本思想  通過上述的分析可以看到,不論是單因素方差分析還是多因素方差分析,控制因素都是可控的,其各個水平可以通過人為的努力得到控制和確定。但在許多實際問題中,有些控制因素很難人為控制,但它們的不同水平確實對觀測變量產生了較為顯著的影響。
  • 理論與實務考點:方差分析的基本思想
    1.方差分析的概念  方差分析(ANOVA)又稱變異數分析或F檢驗,其目的是推斷兩組或多組資料的總體均數是否相同,檢驗兩個或多個樣本均數的差異是否有統計學意義。我們要學習的主要內容包括單因素方差分析即完全隨機設計或成組設計的方差分析和兩因素方差分析即配伍組設計的方差分析。
  • 方差分析時方差不齊次怎麼辦?
    各處理條件下樣本來自正態分布總體、樣本方差相同即方差齊次,這是方差分析兩個極其重要的前提條件。此處最容易遇到的問題是:不滿足正態性,或者方差不齊時怎麼辦?今天小兵給讀者夥伴們精選兩篇文章來解答這個問題。真的!單因素方差分析你用錯了!↑點擊上方文章標題,閱讀原文。
  • 方差分析(ANOVA)原理
    方差分析(ANOVA)原理微信公眾號:生信小知識關注可了解更多的教程及單細胞知識。
  • 第三節 隨機單位組設計資料的方差分析
    第三節 隨機單位組設計資料的方差分析   隨機單位組設計資料和t檢驗中的成對資料相類似,不同之處是成對資料只二個組,而隨機單位組設計有三個或更多的組,因而要比較的均數多於兩個,它是比完全隨機設計更精細的一種設計方法。
  • 從協方差分析看回歸與方差分析的聯繫
    納入協變量的方差分析,即稱協方差分析。一般而言,進行協方差分析的協變量為「定量變量」,比如本例中的「人均月收入」,它一般不是研究者重點研究的變量(本例中重點研究的是教育程度和性別),但因為它會對分析結果造成幹擾,因此在分析過程中必須要將其納入。
  • 【學習記·第31期】單因素、雙因素方差分析VS協方差分析
    方差分析能夠解決t檢驗、z檢驗所無法解決的問題,對統計學和行為科學的發展起了巨大促進作用,因此方差分析的關鍵步驟檢驗以Fisher的名字命名,以紀念其對統計學所作出的傑出貢獻。方差分析的基本假定 學習方差分析之前我們首先要了解方差分析的假定條件。當前提條件滿足時,自變量均方和誤差均方的比值是呈分布的。
  • 第八章 方差分析--第一節 方差分析的意義
    第八章 方差分析 第一節 方差分析的意義   在第七章我們已介紹了兩個樣本均數相比較的顯著性檢驗方法。如果相互比較的組超過兩個,為同時解決幾個均數的比較問題,通常使用方差分析法。
  • SPSS方差分析方法與實例演練
    在數據分析過程中,為了進行兩組以上均數的比較,往往可以使用方差分析方法。那麼我們一起了解一下方差分析基本概念、 單因素方差分析、 多因素方差分析及協方差分析;同時在spss中的操作演練。方差分析--SPSS方差分析的基本思想是:通過分析研究不同變量的變異對總變異的貢獻大小
  • 兩因素方差分析怎麼理解?
    文章來源: 丁點幫你作者:丁點helper看完單因素方差分析,一般的統計學中並不會直接講two-way(雙因素)方差分析,而是講「隨機區組設計的方差分析」,那這兩者有什麼關係嗎?從統計方法的角度來看,隨機區組設計的方差分析其實就屬於兩因素(或多因素)方差分析,一種說法認為,為什麼不直接叫兩因素,是因為不把「區組因素」算作一類真正的「因素」,而重點研究隨機分組因素。我們認為,實際稱雙因素方差分析可能更好理解。不過這裡稱作「隨機區組設計」,也是有其他特別的考慮。
  • 單因素方差分析
    (一)單因素方差分析概念理解步驟  是用來研究一個控制變量的不同水平是否對觀測變量產生了顯著影響。這裡,由於僅研究單個因素對觀測變量的影響,因此稱為單因素方差分析。  例如,分析不同施肥量是否給農作物產量帶來顯著影響,考察地區差異是否影響婦女的生育率,研究學歷對工資收入的影響等。這些問題都可以通過單因素方差分析得到答案。  單因素方差分析的第一步是明確觀測變量和控制變量。例如,上述問題中的觀測變量分別是農作物產量、婦女生育率、工資收入;控制變量分別為施肥量、地區、學歷。  單因素方差分析的第二步是剖析觀測變量的方差。
  • 【實例講解】雙因素方差分析(Two-way Anova)
    【實例講解】單因素方差分析(One-way Anova)什麼是雙因素方差分析雙因素方差分析:顧名思義就是同時研究兩個因素對實驗結果影響是否顯著的分析,分析的結果可能只有一個因素顯著Minitab演示雙因素方差分析例:某噴塗製程中有兩項參數:流量設置和噴頭速度,現在想要了解這兩項參數對噴塗質量的影響是否顯著,我們在流量分別為8、10、12、14和噴頭速度為60、80的情況下搜集數據如下:
  • t檢驗 方差分析 - CSDN
    這裡是以變量值的秩作為分析對象,而非變量值本身。遊程檢驗單樣本遊程檢驗是用來檢驗變量值的出現是否隨機,而兩獨立變量的遊程檢驗則是用來檢驗兩獨立樣本來自的兩總體的分布是否存在顯著差異。其原假設是:兩組獨立樣本來自的兩總體的分布無顯著差異。兩獨立樣本的遊程檢驗與單樣本遊程檢驗的思想基本相同,不同的是計算遊程數的方法。兩獨立樣本的遊程檢驗中,遊程數依賴於變量的秩。
  • spss協方差分析
    什麼是協方差分析?協方差分析又稱「共變量分析」,是方差分析的引申和擴大。基本原理是將線性回歸與方差分析結合起來,調整各組平均數和 F 檢驗的實驗誤差項,檢驗兩個或多個調整平均數有無顯著差異,以便控制在實驗中影響實驗效應(因變量)而無法人為控制的協變量(與因變量有密切回歸關係的變量)在方差分析中的影響。好吧,聽不懂。簡單舉個例子來說:有一項研究,想知道男生和女生在跑步後的心率是否有差異。
  • 方差分析-最全
    下面只是個目錄,請點擊閱讀原文~方差分析(analysis of variation,簡寫為ANOVA)又稱變異數分析或F檢驗,用於兩個及兩個以上樣本均值差別的顯著性檢驗,從函數的形式看,方差分析和回歸都是廣義線性模型的特例,回歸分析lm()也能作方差分析。其目的是推斷兩組或多組數據的總體均值是否相同,檢驗兩個或多個樣本均值的差異是否有統計學意義。
  • 單因素方差分析超完整分析流程
    針對方差分析,正確的錄入格式如下圖所示:03.方差分析的基本前提進行方差分析需要數據滿足以下兩個基本前提:各觀測變量總體要服從正態分布各觀測變量的總體滿足方差齊這是方差分析的兩個基本前提條件,理論上講,數據必須滿足以上兩個條件才能進行方差分析,如不滿足,則使用非參數檢驗。
  • 常用數據分析方法:方差分析及實現!
    方差分析是一種常用的數據分析方法,其目的是通過數據分析找出對該事物有顯著影響的因素、各因素之間的交互作用及顯著影響因素的最佳水平等。本文介紹了方差分析的基礎概念,詳細講解了單因素方差分析、雙因素方差分析的原理,並且給出了它們的python實踐代碼。
  • 重複測量數據的方差分析在SPSS中的應用——【杏花開醫學統計】
    關 注 重複測量數據的方差分析 在SPSS中的應用 關鍵詞:spss、重複測量方差 導 讀 在醫學研究中,很多實驗都涉及到重複測量的數據資料
  • .| 數學分析八講(修訂版) :概述了數學分析的基本思想、基本概念...
    資料下載 | 數學分析八講(修訂版) :概述了數學分析的基本思想、基本概念和基本方法
  • 方差分析 (ANOVA)-29
    單個因素的 ANOVA▶單向方差分析(ANOVA)是比較兩組以上數據均值的差異的統計方法▶假設性檢驗為:雙因素階乘設計▶如同單因素方差分析一樣,總方差可以分為因素的平方和 : SST= SSA+ SSB + SSAB + SSe▶條件是:     ◆SST 是總變異的平方和,