科學網—首次實現量子反常霍爾效應

2020-11-23 科學網
中科院物理所和清華大學研究人員合作攻關
首次實現量子反常霍爾效應

 

本報訊(見習記者孫愛民 記者丁佳)最近,由中科院物理所和清華大學等機構的科研人員組成的團隊,首次成功實現「量子反常霍爾效應」。該結果於3月14日在線發表於美國《科學》雜誌。

 

在凝聚態物理領域,量子霍爾效應研究是一個非常重要的研究方向。發現整數量子霍爾效應與分數量子霍爾效應的科學家分別獲得1985年和1998年諾貝爾物理學獎。

 

「量子反常霍爾效應不同於量子霍爾效應,它不依賴於強磁場而由材料本身的自發磁化產生。」項目組成員、中科院物理所副研究員何珂告訴《中國科學報》記者,「量子反常霍爾效應是多年來凝聚態物理領域研究者努力追求的目標,在實驗上,這也是一個非常困難的重大挑戰。」

 

何珂表示,該效應實現非常困難,需要精準的材料設計、製備與調控。美國物理學家霍爾丹於1988年提出可能存在不需要外磁場的量子霍爾效應,儘管多年來各國科學家提出幾種不同的實現途徑,但所需的材料和結構非常難以製備,因此在實驗上進展緩慢。2008年,美國史丹福大學教授張首晟等提出,在拓撲絕緣體的薄膜中引入磁性,將有可能實現量子反常霍爾效應。2009年清華大學薛其坤研究組和中科院物理所馬旭村研究組利用分子束外延方法,獲得了高質量的Bi2Te3族拓撲絕緣體薄膜。隨後,中科院物理所方忠、戴希和史丹福大學張首晟等,根據理論和材料計算結果,提出在這種拓撲絕緣體薄膜中摻入磁性元素,就會實現量子反常霍爾效應。

 

這種理論與材料設計的突破引起了國際上的廣泛興趣。最近,中科院物理所和清華大學等機構的科研人員組成團隊合作攻關,克服薄膜生長、磁性摻雜、門電壓控制、低溫輸運測量等多道難關,一步一步實現了對拓撲絕緣體的電子結構、長程鐵磁序以及能帶拓撲結構的精密調控,利用分子束外延方法,生長出了高質量的Cr摻雜(Bi,Sb)2Te3拓撲絕緣體磁性薄膜,並在極低溫輸運測量裝置上成功觀測到了量子反常霍爾效應。

 

《科學》雜誌審稿人對此研究給出高度評價,稱其為「凝聚態物理界一項裡程碑式的工作」。

 

「不同的團隊、不同特長的人在一起工作、共同交流,最終促成了這項成果的達成。」何珂告訴記者。

 

何珂表示,人們未來有可能利用量子反常霍爾效應無耗散的邊緣態發展新一代的低能耗電晶體和電子學器件,從而解決電腦發熱問題和摩爾定律的瓶頸問題。然而,研究人員同時表示,這只是一個願景,目前的研究距離真正的應用還很遙遠。

 

項目組成員、清華大學教授王亞愚告訴記者,要滿足量子化的反常霍爾效應,需要材料滿足特別苛刻的要求。「到目前為止,我們對最終實現量子反常霍爾效應的眾多因素還不是理解得很透徹,需要進一步深入研究。」王亞愚表示,「現在談應用還為時尚早。」

 

溫度也是實現量子反常霍爾效應的眾多苛刻條件中的一個。「目前,這個效應需要在一個抑制了熱擾動的純淨實驗環境中才能觀察到。」項目組成員、中科院物理所研究員呂力告訴記者,該實驗成功時溫度接近絕對零度。

 

「下一步我們主要的努力方向是全面測量材料在極低溫下的電子結構和輸運性質,尋找更好的材料體系,在更高的溫度下實現這一效應。那時,也許我們能對其應用前景作更好的判斷。」王亞愚表示。

 

《中國科學報》 (2013-03-18 第1版 要聞)

相關焦點

  • 【中國科學報】首次實現量子反常霍爾效應
    最近,由中科院物理所和清華大學等機構的科研人員組成的團隊,首次成功實現「量子反常霍爾效應」。該結果於3月14日在線發表於美國《科學》雜誌。 在凝聚態物理領域,量子霍爾效應研究是一個非常重要的研究方向。發現整數量子霍爾效應與分數量子霍爾效應的科學家分別獲得1985年和1998年諾貝爾物理學獎。
  • 量子反常霍爾效應
    重要性1、量子反常霍爾效應使得在零磁場的條件下應用量子霍爾效應成為可能;2、這些效應可能在未來電子器件中發揮特殊的作用,可用於製備低能耗的高速電子器件。科研歷史理論計算得到的磁性拓撲絕緣體多層膜的能帶結構和相應的霍爾電導。
  • 我國首次實驗發現量子反常霍爾效應
    近日,我國在量子科學研究中取得重大突破,在磁性摻雜的拓撲絕緣體薄膜中,首次觀測到量子反常霍爾效應。該成果被視為世界基礎研究領域的一項重要科學發現。    作為微觀電子量子行為的宏觀體現,量子霍爾效應一直在凝聚態物理研究中佔據極其重要的地位,並可能在未來用於製備低能耗的高速電子器件。然而,量子霍爾效應的產生需要施加強磁場,因此,造價昂貴、體積龐大等因素限制了其走向實際應用。
  • 薛其坤院士綜述文章:量子反常霍爾效應
    20世紀80年代整數和分數量子霍爾效應的發現使人們開始利用數學中拓撲的概念用來理解物質形態,為凝聚態物理帶來了巨大的概念突破,因此分別於1985年和1998年獲得諾貝爾物理獎,並發展成為凝聚態物理中的一個重要研究方向。 量子反常霍爾效應是磁性材料中反常霍爾效應的量子化版本,是一種不需要外磁場就可以實現的量子霍爾效應。
  • 首次在零磁場下實現了量子反常霍爾絕緣體的陳數調控
    打開APP 首次在零磁場下實現了量子反常霍爾絕緣體的陳數調控 知社學術圈 發表於 2021-01-15 09:37:45 量子反常霍爾效應是一種無需外加磁場的量子霍爾效應
  • 薛其坤獲頒北京科學技術最高獎,首次實驗實現量子反常霍爾效應
    他帶領團隊首次從實驗上觀測到量子反常霍爾效應,這是我國物理學家在過去40多年發現的最重要的全新物理效應。薛其坤。資料圖實驗上實現量子反常霍爾效應曾難住科學家從20世紀80年代初開始,一系列量子霍爾效應的發現,不但開啟了拓撲量子物態這一新研究領域,還為發展未來的低能耗電子器件指明了新的方向。整數和分數量子霍爾效應的發現分別獲得1985年和1998年度的諾貝爾物理學獎。
  • 薛其坤獲頒北京科學技術最高獎,首次實驗實現量子反常霍爾效應
    他帶領團隊首次從實驗上觀測到量子反常霍爾效應,這是我國物理學家在過去40多年發現的最重要的全新物理效應。薛其坤。資料圖實驗上實現量子反常霍爾效應曾難住科學家從20世紀80年代初開始,一系列量子霍爾效應的發現,不但開啟了拓撲量子物態這一新研究領域,還為發展未來的低能耗電子器件指明了新的方向。整數和分數量子霍爾效應的發現分別獲得1985年和1998年度的諾貝爾物理學獎。
  • 量子反常霍爾效應首次觀測 帶動量子概念股集體漲停
    編者按:近日,一則科學界的喜訊傳來:中國物理研究院及清華大學聯合實驗團隊在磁性在磁性摻雜的拓撲絕緣體薄膜中,首次觀測到量子反常霍爾效應,該成果獲得楊振寧稱讚。消息一出,量子概念股集體漲停。A股中跟該實驗密切合作過的上市公司有望大獲收益。  霍爾效應是美國物理學家霍爾在距今130多年前的1879年發現的一個物理效應。
  • 薛其坤院士解釋量子反常霍爾效應—新聞—科學網
    薛其坤據中國之聲《新聞縱橫》報導,昨天(4月10日),清華大學召開新聞發布會宣布,由清華大學薛其坤院士領銜的中國團隊首次在實驗中發現量子反常霍爾效應 薛其坤:要實現這種量子霍爾效應所佔的磁場,是地球地磁場的十萬倍甚至上百萬倍,要產生這樣的磁場需要一個非常大的設備,一般來講的話是和冰箱那麼大,一個計算機的晶片很小,顯然這種量子霍爾效應很難得到應用。 但量子反常霍爾效應的好處在於不需要任何外加磁場,因此這項研究成果將推動新一代低能耗電晶體和電子學器件的發展,可能加速推進信息技術革命進程。
  • 首次在零磁場下實現量子反常霍爾絕緣體中的陳數調控
    它不僅可以用來構建多種新奇的拓撲量子物態,也是量子霍爾效應在電子學器件中實際應用的關鍵。量子反常霍爾效應在零磁場下具有無耗散的手性導電邊緣態和精確的量子電阻,更有利於實現低能耗電子器件,在物質科學、精密測量和電子器件領域中具有非常廣闊的應用前景。量子反常霍爾效應由美國物理學家F. D. M. Haldane (2016年諾貝爾物理學獎獲得者)於1988年從理論上預言。
  • 我國科學家首次在實驗中發現量子反常霍爾效應
    在實驗中發現「量子反常霍爾效應」 我國物理學研究取得世界級成果  【新聞直播間】我科學家發現量子反常霍爾效應4月10日,清華大學和中國科學院物理研究所在北京聯合宣布:由清華大學薛其坤院士領銜,清華大學物理系和中科院物理研究所聯合組成的實驗團隊最近取得重大科研突破,在磁性摻雜的拓撲絕緣體薄膜中,從實驗上首次觀測到量子反常霍爾效應
  • Nature:首次在零磁場實現量子反常霍爾絕緣體中的陳數調控
    量子反常霍爾效應是一種無需外加磁場的量子霍爾效應,是微觀尺度下電子的量子行為在宏觀世界裡精確而完美的體現。它不僅可以用來構建多種新奇的拓撲量子物態,也是量子霍爾效應在電子學器件中實際應用的關鍵。量子反常霍爾效應在零磁場下具有無耗散的手性導電邊緣態和精確的量子電阻,更有利於實現低能耗電子器件,在物質科學、精密測量和電子器件領域中具有非常廣闊的應用前景。量子反常霍爾效應由美國物理學家F. D.
  • 薛其坤等《科學》發文 首次在實驗上發現量子反常霍爾效應
    清華大學、中科院物理所和史丹福大學的研究人員聯合組成的團隊在量子反常霍爾效應研究中取得重大突破,從實驗上首次觀測到量子反常霍爾效應,在美國物理學家霍爾於1880年發現反常霍爾效應133年後終於實現了反常霍爾效應的量子化。
  • 《科學》刊文評述量子反常霍爾效應實驗發現—新聞—科學網
    這個現象是量子自旋霍爾效應,也就是自旋霍爾效應的量子化。 如果量子自旋霍爾系統中一個方向的自旋通道能夠被抑制,比如,通過鐵磁性,這自然的會導致量子反常霍爾效應。鐵磁導體中的霍爾電阻由正比於磁場的正常霍爾效應部分和正比於材料磁化帶來的反常霍爾效應部分組成。量子反常霍爾效應指的是反常霍爾效應部分的量子化。量子自旋霍爾效應的發現極大地促進了量子反常霍爾效應的研究進程。
  • 我科學家首次在實驗中發現量子反常霍爾效應
    新華網北京3月15日電(記者李江濤)由清華大學薛其坤院士領銜,清華大學、中科院物理所和史丹福大學研究人員聯合組成的團隊在量子反常霍爾效應研究中取得重大突破,他們從實驗中首次觀測到量子反常霍爾效應,這是我國科學家從實驗中獨立觀測到的一個重要物理現象
  • 量子反常霍爾效應與材料物理學
    1月8日,由清華大學薛其坤院士領銜,清華大學、中國科學院物理所聯合組成的實驗團隊完成的「量子反常霍爾效應的實驗發現」項目獲2018年度國家自然科學獎一等獎。薛其坤教授領銜的科研團隊在世界上首次在實驗上觀測到量子反常霍爾效應,實現了這一基礎科學領域的重大突破。薛其坤教授表示,材料生長動力學奠定了他們的研究基礎。本期特邀薛其坤院士介紹量子反常霍爾效應發現實驗的過程以及背後的材料物理學研究。
  • Nature重磅:首次在零磁場下實現量子反常霍爾絕緣體中的陳數調控
    量子反常霍爾效應是一種無需外加磁場的量子霍爾效應,是微觀尺度下電子的量子行為在宏觀世界裡精確而完美的體現。它不僅可以用來構建多種新奇的拓撲量子物態,也是量子霍爾效應在電子學器件中實際應用的關鍵。量子反常霍爾效應在零磁場下具有無耗散的手性導電邊緣態和精確的量子電阻,更有利於實現低能耗電子器件,在物質科學、精密測量和電子器件領域中具有非常廣闊的應用前景。
  • 清華大學發現量子反常霍爾效應 觸及諾貝爾獎
    清華大學和中國科學院物理研究所4月10日在北京聯合宣布,由清華大學薛其坤院士領銜,清華大學物理系和中科院物理研究所聯合組成的實驗團隊最近取得重大科研突破,在磁性摻雜的拓撲絕緣體薄膜中,從實驗上首次觀測到量子反常霍爾效應。這一實驗發現也證實了此前中科院物理研究所與史丹福大學理論團隊的預言。
  • 薛其坤:量子反常霍爾效應與材料物理學
    1月8日,由清華大學薛其坤院士領銜,清華大學、中國科學院物理所聯合組成的實驗團隊完成的「量子反常霍爾效應的實驗發現」項目獲2018年度國家自然科學獎一等獎。薛其坤教授領銜的科研團隊在世界上首次在實驗上觀測到量子反常霍爾效應,實現了這一基礎科學領域的重大突破。薛其坤教授表示,材料生長動力學奠定了他們的研究基礎。本期特邀薛其坤院士介紹量子反常霍爾效應發現實驗的過程以及背後的材料物理學研究。
  • 《科學》發文評述量子反常霍爾效應實驗發現
    )欄目刊登美國新澤西州立大學物理與天文系教授Seongshik Oh撰寫的題為「完整的量子霍爾家族三重奏」(The Complete Quantum Hall Trio)文章,對由清華大學薛其坤院士領銜,清華大學物理系和中科院物理所聯合組成的實驗團隊,在磁性摻雜的拓撲絕緣體薄膜中,從實驗上首次觀測到的量子反常霍爾效應,以及此前發現的量子霍爾效應