Aromatase is a novel neosubstrate of cereblon responsible for...

2021-02-08 Blood中文時訊

HEMATOPOIESIS AND STEM CELLS| JUNE 11, 2020

Aromatase is a novel neosubstrate of cereblon responsible for immunomodulatory drug–induced thrombocytopenia

Taro Tochigi, Toshihiro Miyamoto, Kiwamu Hatakeyama, Teppei Sakoda, Daisuke Ishihara, Hidetoshi Irifune, Takahiro Shima, Koji Kato, Takahiro Maeda, Takumi Ito, Hiroshi Handa, Koichi Akashi, Yoshikane Kikushige

Blood (2020) 135 (24): 2146–2158.

https://doi.org/10.1182/blood.2019003749

Key Points

IMiDs induce the degradation of aromatase and impair estradiol autocrine signaling in human megakaryocytes.

Degradation of aromatase by IMiDs causes thrombocytopenia via the inhibition of proplatelet formation.

Abstract

Immunomodulatory drugs (IMiDs) are key agents for the treatment of multiple myeloma and myelodysplastic syndrome with chromosome 5q deletion. IMiDs exert their pleiotropic effects through the recruitment of neosubstrates to cereblon, a substrate receptor of the E3 ubiquitin ligase complex; therefore, identification of cell-specific neosubstrates is important to understand the effects of IMiDs. In clinical practice, IMiDs induce thrombocytopenia, which frequently results in the discontinuation of IMiD treatment. In the current study, we sought to identify the molecular mechanism underlying thrombocytopenia induced by IMiD treatment. We found that IMiDs strongly impaired proplatelet formation, a critical step in functional platelet production, through the inhibition of autocrine estradiol signaling in human megakaryocytes. Furthermore, we identified aromatase, an indispensable enzyme for estradiol biosynthesis, as a novel neosubstrate of cereblon. IMiDs promoted the recruitment of aromatase to cereblon, resulting in the degradation of aromatase in a proteasome-dependent manner. Finally, aromatase was significantly degraded in the bone marrow of patients with multiple myeloma who developed thrombocytopenia with IMiD treatment. These data suggest that aromatase is a neosubstrate of cereblon that is responsible for IMiD-induced thrombocytopenia.

Subjects:

Hematopoiesis and Stem Cells, Platelets and Thrombopoiesis

Topics:

aromatase, estradiol, megakaryocytes, proplatelet, thrombocytopenia, catabolism, multiple myeloma, myelodysplastic syndrome, signal transduction

REFERENCES

1.Dimopoulos M, Spencer A, Attal M, et al; Multiple Myeloma (010) Study Investigators. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007;357(21):2123-2132.

2.Weber DM, Chen C, Niesvizky R, et al; Multiple Myeloma (009) Study Investigators. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med. 2007;357(21):2133-2142.

3.Miguel JS, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055-1066.

4.List A, Dewald G, Bennett J, et al; Myelodysplastic Syndrome-003 Study Investigators. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355(14):1456-1465.

5.Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327(5971):1345-1350.

6.Krönke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301-305.

7.Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305-309.

8.Krönke J, Fink EC, Hollenbach PW, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature. 2015;523(7559):183-188.

9.Ito T, Handa H. Cereblon and its downstream substrates as molecular targets of immunomodulatory drugs. Int J Hematol. 2016;104(3):293-299.

10.Fischer ES, Böhm K, Lydeard JR, et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature. 2014;512(7512):49-53.

11.Papathanasiou P, Perkins AC, Cobb BS, et al. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity. 2003;19(1):131-144.

12.Dumortier A, Kirstetter P, Kastner P, Chan S. Ikaros regulates neutrophil differentiation. Blood. 2003;101(6):2219-2226.

13.Li S, Fu J, Wang H, et al. IMiD compounds affect CD34+ cell fate and maturation via CRBN-induced IKZF1 degradation. Blood Adv. 2018;2(5):492-504.

14.Lopez RA, Schoetz S, DeAngelis K, O』Neill D, Bank A. Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc Natl Acad Sci USA. 2002;99(2):602-607.

15.Machlus KR, Italiano JE Jr. The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785-796.

16.Junt T, Schulze H, Chen Z, et al. Dynamic visualization of thrombopoiesis within bone marrow. Science. 2007;317(5845):1767-1770.

17.Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995;81(5):695-704.

18.Lecine P, Villeval JL, Vyas P, Swencki B, Xu Y, Shivdasani RA. Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes. Blood. 1998;92(5):1608-1616.

19.Kunishima S, Nishimura S, Suzuki H, Imaizumi M, Saito H. TUBB1 mutation disrupting microtubule assembly impairs proplatelet formation and results in congenital macrothrombocytopenia. Eur J Haematol. 2014;92(4):276-282.

20.Cortin V, Garnier A, Pineault N, Lemieux R, Boyer L, Proulx C. Efficient in vitro megakaryocyte maturation using cytokine cocktails optimized by statistical experimental design. Exp Hematol. 2005;33(10):1182-1191.

21.Kikushige Y, Shima T, Takayanagi S, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010;7(6):708-717.

22.Kikushige Y, Miyamoto T, Yuda J, et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell. 2015;17(3):341-352.

23.Attal M, Lauwers-Cances V, Marit G, et al; IFM Investigators. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1782-1791.

24.McCarthy PL, Owzar K, Hofmeister CC, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1770-1781.

25.Palumbo A, Cavallo F, Gay F, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371(10):895-905.

26.Miyawaki K, Iwasaki H, Jiromaru T, et al. Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood. 2017;129(25):3332-3343.

27.Mazzi S, Lordier L, Debili N, Raslova H, Vainchenker W. Megakaryocyte and polyploidization. Exp Hematol. 2018;57:1-13.

28.Tomer A. Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes. Blood. 2004;104(9):2722-2727.

29.Mattia G, Vulcano F, Milazzo L, et al. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood. 2002;99(3):888-897.

30.Yamane A, Nakamura T, Suzuki H, et al. Interferon-alpha 2b-induced thrombocytopenia is caused by inhibition of platelet production but not proliferation and endomitosis in human megakaryocytes. Blood. 2008;112(3):542-550.

31.Eckly A, Heijnen H, Pertuy F, et al. Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood. 2014;123(6):921-930.

32.Rowley JW, Oler AJ, Tolley ND, et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes [published correction appears in Blood. 2014;123(24):3843]. Blood. 2011;118(14):e101-e111.

33.Nagata Y, Yoshikawa J, Hashimoto A, Yamamoto M, Payne AH, Todokoro K. Proplatelet formation of megakaryocytes is triggered by autocrine-synthesized estradiol. Genes Dev. 2003;17(23):2864-2869.

34.Dutertre M, Gratadou L, Dardenne E, et al. Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer. Cancer Res. 2010;70(9):3760-3770.

35.Shi DS, Smith MC, Campbell RA, et al. Proteasome function is required for platelet production. J Clin Invest. 2014;124(9):3757-3766.

36.Barakat R, Oakley O, Kim H, Jin J, Ko CJ. Extra-gonadal sites of estrogen biosynthesis and function. BMB Rep. 2016;49(9):488-496.

37.Chen N, Kasserra C, Reyes J, Liu L, Lau H. Single-dose pharmacokinetics of lenalidomide in healthy volunteers: dose proportionality, food effect, and racial sensitivity. Cancer Chemother Pharmacol. 2012;70(5):717-725.

38.Matsue K, Iwasaki H, Chou T, et al. Pomalidomide alone or in combination with dexamethasone in Japanese patients with refractory or relapsed and refractory multiple myeloma. Cancer Sci. 2015;106(11):1561-1567.

39.Matyskiela ME, Zhang W, Man HW, et al. A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J Med Chem. 2018;61(2):535-542.

40.Matyskiela ME, Lu G, Ito T, et al. A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature. 2016;535(7611):252-257.

41.Petzold G, Fischer ES, Thomä NH. Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase. Nature. 2016;532(7597):127-130.

42.Rajkumar SV, Jacobus S, Callander NS, et al; Eastern Cooperative Oncology Group. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol. 2010;11(1):29-37.

43.Rosendaal FR, Helmerhorst FM, Vandenbroucke JP. Female hormones and thrombosis. Arterioscler Thromb Vasc Biol. 2002;22(2):201-210.

44.Smith IE, Dowsett M. Aromatase inhibitors in breast cancer. N Engl J Med. 2003;348(24):2431-2442.

45.Garcia-Velasco JA, Moreno L, Pacheco A, et al. The aromatase inhibitor letrozole increases the concentration of intraovarian androgens and improves in vitro fertilization outcome in low responder patients: a pilot study. Fertil Steril. 2005;84(1):82-87.

46.de Ronde W, de Jong FH. Aromatase inhibitors in men: effects and therapeutic options. Reprod Biol Endocrinol. 2011;9:93.

47.Dixon JM, Renshaw L, Young O, et al. Letrozole suppresses plasma estradiol and estrone sulphate more completely than anastrozole in postmenopausal women with breast cancer. J Clin Oncol. 2008;26(10):1671-1676.

48.Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9-16.

49.Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017;17(1):5-19.

50.McCarthy PL, Holstein SA, Petrucci MT, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol. 2017;35(29):3279-3289.

© 2020 by The American Society of Hematology

This program is developed by Focus Insight with the permission of American Society of Hematology, Inc. The content are excerpted from the journal Blood. Copyright © 2019 The American Society of Hematology. All rights reserved. 「American Society of Hematology」, 「ASH」 and the ASH Logo are registered trademarks of the American Society of Hematology.

相關焦點

  • Warm Tips on Novel Coronavirus Infection of Pneumonia
    What are the clinical manifestations of novel coronavirus infection
  • Android上玩玩Hook:Cydia Substrate實戰
    安裝Cydia Substrate框架Android本地服務首先就是在Android設備中安裝Cydia Substrate框架的本地服務應用substrate.apk,我們可以在其官網下載到。當然,我們安裝substrate後,需要「Link Substrate Files」(連接本地的Substrate服務文件),這一步是需要Root權限的,連接後還需要重啟設備才能夠生效。下載使用Cydia Substrate庫 Cydia Substrate官方建議在Android SDK Manager中添加它們插件地址的方式進行更新下載。
  • 春秋航空接收首架空客A321neo
    《中國民航報》、中國民航網 記者柏蓓 報導:春秋航空在中國天津接收了其首架空客A321neo飛機。該架飛機在德國漢堡完成總裝,並於九月初調機至空中巴士天津交付中心。春秋航空該架A321neo飛機使用CFM國際公司LEAP-1A發動機,採用了共240座的舒適性全經濟艙布局。該架飛機交付後,將首先被用於春秋航空的國內航線運營。截至2020年8月底,春秋航空運營著包括96架A320系列飛機的全空客機隊。
  • 春秋航空引進首架空客A321neo飛機
    【民航事兒】2020年9月18日,中國最大的民營航空公司春秋航空在中國天津接收了其首架空客A321neo春秋航空該架A321neo飛機使用CFM國際公司LEAP-1A發動機,採用了共240座的舒適性全經濟艙布局。該架飛機交付後,將首先被用於春秋航空的國內航線運營。截至2020年8月底,春秋航空運營著包括96架A320系列飛機的全空客機隊。
  • 吉祥航空首架空客新一代A321neo飛機投入運行
    首日飛抵西安、成都等地吉祥航空首架空客新一代A321neo飛機,註冊號B-30EQ,噴塗「絢彩花瓣」主題彩繪,於今日正式投入運行,執行虹橋-西安、虹橋-成都往返航班。吉祥航空為搭乘首航航班的旅客贈送精美紀念品,以感謝旅客的支持及共同見證新飛機的投入使用。
  • 春秋航空迎來第一架空客A320NEO(圖)
    A320neo是空客為A320系列飛機推出的產品升級機型,NEO即為New Engine Option(新發動機選項)的縮寫,其主要特點除選裝新型發動機外,還裝配大型鯊鰭小翼。A320neo較之傳統A320機型能夠降低單座油耗20%,相當於每架A320neo每年減少二氧化碳排放5000噸,與上一代機型相比,還可以降低近50%的噪聲。
  • Substrate Warpage 探討 1
    生產工藝:process key (樹脂含量、流動率、凝脂化時間)張力控制:NA溫度控制:NA層壓設計: 層壓過程中的時間『、溫度、及升溫升壓速率緩慢降溫速度/成型壓力:NA銅層均勻性:NA加工方向一致性:NA關於具體的分析過程,待續討論,後面會討論warpage 常見原因和預防措施,同時會share 部分substrate
  • 春秋航空:接收首架空客A321neo客機
    9月18日,一架全新的空客A321neo客機從天津飛抵上海浦東機場,春秋航空迎來了其首架空客A321neo客機。該架A321neo客機機身編號為B-30EU,在德國漢堡完成總裝,並於九月初調機至空中巴士天津交付中心。
  • 組圖:春秋航空的首架空客A321neo飛機來了!
    春秋航空該架A321neo 春秋航空該架A321neo
  • 科威特航空接收首批兩架空客A330neo飛機
    【民航事兒】2020年10月30日,土魯斯 —— 科威特的國家航空公司—科威特航空日前接收了其首批兩架空客A330neo該公司共訂購了8架A330neo飛機。目前科威特航空共運營著15架空客飛機機隊,包括7架A320ceo飛機,3架A320neo飛機和5架A330ceo飛機。此次也是空客A330-800飛機的首次交付。
  • IndiGo完成所有A320 Neo的GTF發動機升級更換
    A320neo飛機都已經安裝了普惠公司升級的GTF發動機。一位知情人士表示,IndiGo公司已在8月31日截止日期之前完成了128架A320neo飛機的發動機更換工作,這些發動機都是由普惠公司提供。印度民航總局官員補充說:「GoAir公司尚未對大約20架A320neo飛機的發動機進行更換。」
  • 南方航空接收靈活客艙構型空客A321neo飛機
    中國航空新聞網訊:2020年9月2日,廣州 —— 中國南方航空日前在德國漢堡接收了一架靈活客艙構型(ACF)空客A321neo飛機。空客A321neo ACF採用了全新艙門布局和機身增強措施,可令航空公司更好地利用客艙空間,並在腹艙預留更多燃油存儲空間,使其能夠擁有最高4700海裡的航程能力。空客A321飛機是A320系列飛機中最大的成員,其最大載客量達244人。
  • 科威特航空接收其首批兩架空客A330neo飛機
    日消息:科威特的國家航空公司-科威特航空日前接收了其首批兩架空客A330neo飛機。該公司共訂購了8架A330neo飛機。目前科威特航空共運營著15架空客飛機機隊,包括7架A320ceo飛機,3架A320neo飛機和5架A330ceo飛機。此次也是空客A330-800飛機的首次交付。
  • 春秋航空接收其首架空客A321neo飛機
    民航資源網2020年9月18日消息:2020年9月18日,中國最大的民營航空公司春秋航空在中國天津接收了其首架空客A321neo春秋航空該架A321neo飛機使用CFM國際公司LEAP-1A發動機,採用了共240座的舒適性全經濟艙布局。該架飛機交付後,將首先被用於春秋航空的國內航線運營。
  • 春秋航空首架空客A321neo機型成功首航
    2020年9月27日,隨著春秋航空執飛的9C8775航班落地深圳寶安機場,意味著中國最大的民營航空公司春秋航空首架空客A321neo機型成功首航。該架飛機在德國漢堡完成總裝,並於九月初調機至空中巴士天津交付中心。
  • 印度民航總局下令IndiGo更換A320neo問題發動機
    剛剛從空客下單300架A320neo系列客機的印度IndiGo航空公司被印度民航總局(DGCA)要求更換29臺使用在16架A320neo上的PW1100發動機。本周,IndiGo一架A320neo從加爾各答飛往普納的航班途中其中一個普惠PW1100發動機發生停車,迫使航班要返回加爾各答機場。
  • 希臘SKY express航空公司訂購4架空客A320neo飛機
    圖:A320neo SKY EXPRESS 空客供圖民航資源網2020年10月15日消息:總部位於希臘雅典的SKY express航空公司日前確認訂購4架空客A320neo飛機,成為了空中巴士最新的客戶。
  • 俄羅斯西伯利亞航空接收其首架空客A320neo飛機
    中國航空新聞網訊:俄羅斯領先的航空公司之一、寰宇一家航空聯盟成員西伯利亞航空(S7 Airlines)日前接收了其首架空客A320neo飛機。該架飛機由中銀航空租賃公司購買,西伯利亞航空以租賃方式運營,即將成為俄羅斯首架投入運營的A320neo,也是西伯利亞航空首架使用其全新塗裝的空客飛機。西伯利亞航空的A320neo飛機配備普惠PW1100G發動機,採用舒適的兩級客艙布局,共有8個商務艙和156個經濟艙座位。西伯利亞航空將把A320neo飛機投入其國內和國際航線運營。
  • 重慶引進國內首架A321neo ACF構型飛機
    重慶航空舉行水門儀式歡迎A321neo ACF構型飛機。新華網發(遊超傑 攝)A321neo ACF構型飛機內部結構。新華網發(遊超傑 攝)A321neo ACF構型飛機外觀。新華網發(遊超傑 攝)新華網重慶12月31日電(李相博)重慶江北國際機場31日14點55分迎來國內首架「空客靈活客艙」(AirbusCabinFlex,簡稱「ACF」)構型的空客A321neo飛機,這也是重慶地區首架實施異地委託監管、一體化申報入關方式的保稅租賃飛機。