解析運放電路選型原則

2020-11-22 電子發燒友

目前市場運放種類繁多,面對不同的使用條件和環境,是否都能選擇一樣的運放呢?很多電子工程師都會為此感到困惑!沒關係,今天本文就為大家揭開運放選型的神秘面紗,一起來看看吧!

一、該如何分析運放電路呢?

在學習運放選型前,我們需要先來透測的學習運放電路的內部結構和原理,對於我們來說運算放大器是模擬電路中十分重要的元件,它能組成放大、加法、減法、轉換等各種電路,我們可以運用運放的「虛短」和「虛斷」來分析電路,然後應用歐姆定律等電流電壓關係,即可得輸入輸出的放大關係等。

由於運放的電壓放大倍數很大,一般通用型運算放大器的開環電壓放大倍數都在80 dB以上。而運放的輸出電壓是有限的,一般在 10 V~14 V。因此運放的差模輸入電壓不足1 mV,兩輸入端近似等電位,相當於「短路」。開環電壓放大倍數越大,兩輸入端的電位越接近相等。「虛短」是指在分析運算放大器處於線性狀態時,可把兩輸入端視為等電位,這一特性稱為虛假短路,簡稱虛短。顯然不能將兩輸入端真正短路。

由於運放的差模輸入電阻很大,一般通用型運算放大器的輸入電阻都在1MΩ以上。因此流入運放輸入端的電流往往不足1uA,遠小於輸入端外電路的電流。故通常可把運放的兩輸入端視為開路,且輸入電阻越大,兩輸入端越接近開路。「虛斷」是指在分析運放處於線性狀態時,可以把兩輸入端視為等效開路,這一特性稱為虛假開路,簡稱虛斷。顯然不能將兩輸入端真正斷路。

下面本文用虛斷和虛斷方法來對實際的電路進行分析,如圖1-1所示,是常見的反相比例運算放大電路:

圖1-1.方向比例運算放大電路

在反相放大電路中,信號電壓通過電阻R1加至運放的反相輸入端,輸出電壓Vo通過反饋電阻Rf反饋到運放的反相輸入端,構成電壓並聯負反饋放大電路。

運放的同相端接地=0V,反相端和同相端虛短,所以也是0V,反相輸入端輸入電阻很高,虛斷,幾乎沒有電流注入和流出,那麼R1和Rf相當於是串聯的,流過一個串聯電路中的每一隻組件的電流是相同的,即流過R1的電流和流過Rf的電流是相同的。

根據歐姆定律:

Is= (Vs- V-)/R1...............(1)

If= (V- - Vo)/Rf...............(2)

V- = V+ = 0 ....................(3)

Is= If .............................(4)

求解後可能Vo== (-Rf/R1)*Vi

在分析電路的過程中,暫時不用管運放的其他特性,就根據虛短和虛斷的特性來分析。當然,若運放不工作在放大區時,不滿足虛短和虛斷髮條件,不能使用此種方法來分析,如比較器。

如下圖1-2,是運放實現的加法器,用虛短和虛斷的方法來分析此電路。

圖1-2.運放實現的加法器

由於電路存在虛短,運放的淨輸入電壓vI=0,反相端為虛地。

vI=0,vN=0.......................(5)

反相端輸入電流iI=0的概念,通過R2與R1的電流之和等於通過Rf的電流故

(Vs1 – V-)/R1 + (Vs2 – V-)/R2 = (V- –Vo)/Rf.......(6)

如果取R1=R2=R3,由a,b兩式解得

-Vout=Vs1+Vs.......................(7)

式(7)中負號為反相輸入所致,若再接一級反相電路,可消去負號。

簡言之,虛短是運放正輸入端和負輸入端的電壓相等,近似短路;虛斷是流入正負輸入端的電流為0。只要掌握了這一點,再運用歐姆定律,即可很容易的分析同相比例放大電路,反向比例放大電路等常用的運放放大電路。

二、運放具體該怎麼選擇呢?

下面分類介紹什麼情況下選擇什麼樣的運放!

1. 通用型運算放大器

通用型運算放大器就是以通用為目的而設計的。這類器件的主要特點是價格低廉、產品量大面廣,其性能指標能適合於一般性使用。例mA741(單運放)、LM358(雙運放)、LM324(四運放),它們是目前應用最為廣泛的集成運算放大器。

2. 精密運算放大器

精密運算放大器一般指失調電壓低於1mV的運放,對於直流輸入信號,輸入失調電壓(VOS)和它的溫漂小就行,但對於交流輸入信號,我們還必須考慮運放的輸入電壓噪聲和輸入電流噪聲,在很多應用情況下輸入電壓噪聲和輸入電流噪聲顯得更為重要一些。在傳感器類型和(或)其使用環境帶來許多特別要求時,例如超低功耗、低噪聲、零漂移、軌到軌輸入及輸出、可靠的熱穩定性和對數以千計讀數和(或)在惡劣工作條件下提供一致性能的可再現性,運算放大器的選擇就會變得特別困難。精密放大電路會多一些電源去耦,濾波等特殊設計的電路。主要區別在於運算放大器上,精密運算放大器的性能比一般運放好很多,比如開環放大倍數更大,CMRR更大,速度比較慢,GBW,SR一般比較小。失調電壓或失調電流比較小,溫度漂移小,噪聲低等等。好的精密運放的性能遠不是一般運算放大器可以比得,一般運放的失調往往是幾個mV,而精密運放可以小到1uV的水平。要放大微小的信號,必須用精密運放,用了一般的運放,它自身都會帶入很大的幹擾。要通過外圍電路改善,小幅或者微調可以,但無法大幅度或者徹底改變。最常用的精密運放就是OP07,以及它的家族,OP27,OP37,OP177,OPA2333。其他的還有很多,比如美國AD公司的產品,很多都是OPA帶頭的。

3. 高阻型集成運算放大器

高阻型集成運算放大器的特點是差模輸入阻抗非常高,輸入偏置電流非常小,一般rid>(109~1012)W,IIB為幾皮安到幾十皮安。實現這些指標的主要措施是利用場效應管高輸入阻抗的特點,用場效應管組成運算放大器的差分輸入級。用FET作輸入級,不僅輸入阻抗高,輸入偏置電流低,而且具有高速、寬帶和低噪聲等優點,但輸入失調電壓較大。常見的集成器件有LF356、LF355、LF347(四運放)及更高輸入阻抗的CA3130、CA3140等。

4. 低溫漂型運算放大器

在精密儀器、弱信號檢測等自動控制儀表中,總是希望運算放大器的失調電壓要小且不隨溫度的變化而變化。低溫漂型運算放大器就是為此而設計的。常用的高精度、低溫漂運算放大器有OP-07、OP-27、AD508及由MOSFET組成的斬波穩零型低漂移器件ICL7650等。

5. 高速型運放

高速型運放在快速A/D和D/A轉換器、視頻放大器中,要求集成運算放大器的轉換速率SR一定要高,單位增益帶寬BWG一定要足夠大,像通用型集成運放是不能適合於高速應用的場合的。高速型運算放大器主要特點是具有高的轉換速率和寬的頻率響應。常見的運放有LM318、mA715等,其SR=50~70V/us,BWG>20MHz。

6. 低功耗型運放

低功耗型運放由於電子電路集成化的最大優點是能使複雜電路小型輕便,所以隨著便攜運算放大器式儀器應用範圍的擴大,必須使用低電源電壓供電、低功率消耗的運算放大器相適用。常用的運算放大器有TL-022C、TL-060C等,其工作電壓為±2V~±18V,消耗電流為50~250mA。目前有的產品功耗已達微瓦級,例如ICL7600的供電電源為1.5V,功耗為10mW,可採用單節電池供電。

7. 高壓大功率型運算放大器

高壓大功率型運算放大器的輸出電壓主要受供電電源的限制。在普通的運算放大器中,輸出電壓的最大值一般僅幾十伏,輸出電流僅幾十毫安。若要提高輸出電壓或增大輸出電流,集成運放外部必須要加輔助電路。高壓大電流集成運算放大器外部不需附加任何電路,即可輸出高電壓和大電流。例如D41集成運放的電源電壓可達±150V,mA791集成運放的輸出電流可達1A。

相信通過上面的介紹,對不同使用條件下是否能使用同一種運放,顯然是比較清楚的,實際選擇集成運放時,還應考慮其他因素。例如信號源的性質,是電壓源還是電流源;負載的性質,集成運放輸出電壓和電流的是否滿足要求;環境條件,集成運放允許工作範圍、工作電壓範圍、功耗與體積等因素是否滿足要求。

最後再贈送大家一些評價運放的小經驗,評價集成運放性能的優劣,應看其綜合性能。SR為轉換率,單位為V/ms,其值越大,表明運放的交流特性越好;Iib為運放的輸入偏置電流,單位是nA;VOS為輸入失調電壓,單位是mV。Iib和VOS值越小,表明運放的直流特性越好。所以,對於放大音頻、視頻等交流信號的電路,選SR(轉換速率)大的運放比較合適;對於處理微弱的直流信號的電路,選用精度比較的高的運放比較合適(既失調電流、失調電壓及溫飄均比較小)。在沒有特殊要求的場合,儘量選用通用型集成運放,這樣既可降低成本,又容易保證貨源。當一個系統中使用多個運放時,儘可能選用多運放集成電路,例如LM324、LF347等都是將四個運放封裝在一起的集成電路。

打開APP閱讀更多精彩內容

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴

相關焦點

  • 揭開運放選型的神秘面紗
    揭開運放選型的神秘面紗 胡薇 發表於 2018-11-01 17:44:08 目前市場運放種類繁多,面對不同的使用條件和環境,是否都能選擇一樣的運放呢?
  • 運放參數解釋及經常使用運放選型
    因為在轉換期間,運放的輸入級處於開關狀態。所以運放的反饋迴路不起作用,也就是轉換速率與閉環增益無關。 轉換速率對於大信號處理是一個非常重要的指標。對於一般運放轉換速率SR<=10V/μs。快速運放的轉換速率SR>10V/μs。眼下的快速運放最高轉換速率SR達到 6000V/μs。這用於大信號處理中運放選型。
  • 濾波器的選型原則和分類
    打開APP 濾波器的選型原則和分類 網絡整理 發表於 2020-01-30 10:48:00 本文主要介紹濾波器的選型原則,希望對大家有所幫助。
  • 你真的理解了運放的電壓追隨電路嗎?
    運放的電壓追隨電路,如圖1所示,利用虛短、虛斷,一眼看上去簡單明了,沒有什麼太多內容需要注意,那你可能就大錯特錯了。理解好運放的電壓追隨電路,對於理解運放同相、反相、差分、以及各種各樣的運放的電路,都有很大的幫助。
  • 如何正確選型集成運放的種類和型號
    通常情況下,在設計集成運放應用電路時,沒有必要研究運放的內部電路,而是根據設計需求尋找具有相應性能指標的晶片。因此,了解運放的類型,理解運放的主要性能,是正確選擇運放的前提。——摘自《模擬電子技術基礎》(童詩白、華成英) 集成運放參數非常多,因此對應的種類和型號也很多,如何選型一直是眾工程師頭痛的問題。
  • 運放加偏置電壓電路圖分析
    他們的共同特點是輸出幅值不能擺動到電源電壓的上下限,因此限制了輸出電路的動態響應範圍;另一類是以TLV2472等為代表的(軌對軌)單電源運放,LM358運放,但討論的結果同樣實用於性能優越的單電源運放。   單電源運放不僅可以單電源供電,而且也可以雙電源供電。如果採用雙電源供電,單電源運放就失去了他的優勢,從而與普通的雙電源運放在使用上沒有太大的區別。
  • 音頻運放加法器電路_njm4558 音頻運放電路
    打開APP 音頻運放加法器電路_njm4558 音頻運放電路 發表於 2017-08-16 12:06:45   在電子學中,加法器是一種數位電路,其可進行數字的加法計算。
  • 學霸帶你飛 | 這些運放基本電路全解析,了解一下
    在高頻電路中,不要違反運放的帶寬限制,這是非常重要的。實際應用中,一級放大電路的增益通常是100倍(40dB),再高的放大倍數將引起電路的振蕩,除非在布板的時候就非常注意。如果要得到一個放大倍數比較的大放大器,用兩個等增益的運放或者多個等增益運放比用一個運放的效果要好的多。
  • 集成運放的非線性失真分析及電路應用
    集成運放將運算放大器和一些外圍電路集成在一塊矽片上,組合成了具有特定功能的電子電路。集成運放體積小,使用方便靈活,適合應用在移動通信和數碼產品等便攜設備中。  線性特性是考查具有放大功能的集成運放和接收射頻前端電路的一個重要參數,並且線性範圍對集成運放的連接方式也有很大影響。集成運放的線性範圍太小,就會造成輸出信號產生多次諧波和較大的諧波功率,嚴重地影響整個電路的功能。
  • 電阻的基本選型原則及案例分析[表]
    電阻知識大講臺第一講圍繞電阻的基礎知識,給大家總結了電阻的一些基本概念(其中包括電阻的特性參數),第二講給大家講解了如何進行電阻的檢測與失效分析,這一講將在之前兩講的基礎上,更進一層,總結了電阻的選型原則,包括歸一化選型方向(快速定位電阻類別),以及特性參數選型原則(根據電阻的特性參數來細化電阻的選型),以幫助工程師在電路設計中快速進行電阻選型
  • 集成運放的偏置電路圖解析
    打開APP 集成運放的偏置電路圖解析 發表於 2017-11-21 11:21:33   集成運放電路中的恆流偏置電流是如何工作的   集成運放中為了使各級電路均有穩定的靜態工作點,不是採用給電晶體b- e間或場效應管g-s間加偏置電壓來決定輸出迴路電流,而是為每級放大管輸出迴路注入恆定電流(Icg,Isg 或Idg;Isg)的方法來設置Q點,這種方法在具有恆流源的差分放大電路中曾採用過。
  • 集成運放電路設計原理圖
    按功能可分為模擬集成電路和數字集成電路兩大類,其中集成電路運算放大器(線性集成電路,以下簡稱集成運放)是模擬集成電路中應用最廣泛的,它實質上是一個高增益的直接耦合多級放大電路。  集成電路的特點  1. 單個元件精度不高,受溫度影響也大,但元器件的性能參數比較一致,對稱性好。適合於組成差動電路。  2.
  • 單電源供電的全差分斬波運放電路
    ,設計了單電源供電的全差分斬波運放電路,同時,為了減小殘餘電壓的失調, 採用了T/H(跟蹤-保持)解調技術,該電路在斬波頻率150KHz工作時,輸入等效噪聲達到31.12nV/Hz。   對輸出信號進行傅立葉分析,得到運放的最終輸入噪聲譜密度(PSD)為:        其中係數K與工藝的噪聲參數有關。   3 運放電路的設計   本文設計的斬渡放大器為CMOS全差分電路結構。由斬波開關、主運放電路、輸出級和共模反饋電路四部分組成。
  • 多角度分析運放電路如何降噪,解決方法都在這裡了!
    降低外部噪聲的影響對發揮低噪聲運放的性能至關重要。,100Hz紋波是主要的電源噪聲,對於運放電路,100Hz噪聲電平通常要求控制在10nV-100nV(RTI)內,這取決於三個因素:運放在100Hz時的電源抑制比(PSRR),穩壓器的紋波抑制比及穩壓器的輸入濾波電容的大小。
  • 資深工程師教你如何選擇運放
    沒關係,這是很多電子工程師都會困惑的問題,接下來為你揭開運放選型的神秘面紗。 該如何分析運放電路呢? 在學習運放選型前,我們需要先來透測的學習運放電路的內部結構和原理,對於我們來說運算放大器是模擬電路中十分重要的元件,它能組成放大、加法、減法、轉換等各種電路,我們可以運用運放的「虛短」和「虛斷」來分析電路,然後應用歐姆定律等電流電壓關係,即可得輸入輸出的放大關係等。
  • 03.運放參數---輸入阻抗和輸入電容
    但在某些應用中會引起放大電路的不穩定。尤其是反向輸入端的電容,是放大電路不穩定的幾大罪魁禍首之一。如下圖 4 所示是運放在有輸入電容的影響下的模型。正是這個極點的存在,在某些條件下,可能會引起放大電路的不穩定。 運放輸入電容引入的極點如下式。
  • 乾貨| 實圖分析運放7大經典電路
    對於不熟悉的運放應用電路,就使用該基本分析方法。運放是用途廣泛的器件,接入適當的反饋網絡,可用作精密的交流和直流放大器、有源濾波器、振蕩器及電壓比較器。該電路的設計要點是:在滿足合適的截止頻率的條件下,儘可能將R233和R230的阻值選一致,C50和C201的容量大小選取一致(兩級RC電路的電阻、電容值相等時,叫賽倫凱電路),這樣就可以在滿足濾波性能的情況下,將器件的種類歸一化。其中電阻R280是防止輸入懸空,會導致運放輸出異常。
  • 比較器的典型應用電路,如何區分比較器與運放,比較器與運放的差異
    比較器的典型應用電路,如何區分比較器與運放,比較器與運放的差異 王增濤 發表於 2017-05-22 17:27:39   對兩個或多個數據項進行比較,以確定它們是否相等
  • 設計電路必備:濾波、穩壓、比較、運放
    一、 一種常用的無源低通濾波電路上圖由RC組成的低通濾波電路很常用,在直流信號處理中常常會出現。熟悉RC微積分電路的可知,這不是RC積分電路嘛,其實積分電路具有低通濾波的功能。下圖的電壓採集電路中就使用到了該濾波電路。
  • 模擬運放的指標分類及特點 運算放大器的對信號放大的影響
    單位增益帶寬是一個很重要的指標,對於正弦小信號放大時,單位增益帶寬等於輸入信號頻率與該頻率下的最大增益的乘積,換句話說,就是當知道要處理的信號頻率和信號需要的增以後,可以計算出單位增益帶寬,用以選擇合適的運放。這用於小信號處理中運放選型。