工程師3 發表於 2018-05-10 14:54:00
輸入失調電壓VIO:輸入失調電壓定義為集成運放輸出端電壓為零時,兩個輸入端之間所加的補償電壓。輸入失調電壓實際上反映了運放內部的電路對稱性,對稱性越好,輸入失調電壓越小。輸入失調電壓是運放的一個十分重要的指標,特別是精密運放或是用於直流放大時。輸入失調電壓與製造工藝有一定關係,其中雙極型工藝(即上述的標準矽工藝)的輸入失調電壓在±1~10mV之間;採用場效應管做輸入級的,輸入失調電壓會更大一些。對於精密運放,輸入失調電壓一般在 1mV以下。輸入失調電壓越小,直流放大時中間零點偏移越小,越容易處理。所以對於精密運放是一個極為重要的指標。
輸入失調電壓的溫度漂移(簡稱輸入失調電壓溫漂)ΑVIO:輸入失調電壓的溫度漂移定義為在給定的溫度範圍內,輸入失調電壓的變化與溫度變化的比值。這個參數實際是輸入失調電壓的補充,便於計算在給定的工作範圍內,放大電路由於溫度變化造成的漂移大小。一般運放的輸入失調電壓溫漂在±10~20μV/℃之間,精密運放的輸入失調電壓溫漂小於±1μV/℃。
輸入偏置電流IIB:輸入偏置電流定義為當運放的輸出直流電壓為零時,其兩輸入端的偏置電流平均值。輸入偏置電流對進行高阻信號放大、積分電路等對輸入阻抗有要求的地方有較大的影響。輸入偏置電流與製造工藝有一定關係,其中雙極型工藝(即上述的標準矽工藝)的輸入偏置電流在±10nA~1μA之間;採用場效應管做輸入級的,輸入偏置電流一般低於1nA。
輸入失調電流IIO:輸入失調電流定義為當運放的輸出直流電壓為零時,其兩輸入端偏置電流的差值。輸入失調電流同樣反映了運放內部的電路對稱性,對稱性越好,輸入失調電流越小。輸入失調電流是運放的一個十分重要的指標,特別是精密運放或是用於直流放大時。輸入失調電流大約是輸入偏置電流的百分之一到十分之一。輸入失調電流對於小信號精密放大或是直流放大有重要影響,特別是運放外部採用較大的電阻(例如10k或更大時),輸入失調電流對精度的影響可能超過輸入失調電壓對精度的影響。輸入失調電流越小,直流放大時中間零點偏移越小,越容易處理。所以對於精密運放是一個極為重要的指標。
輸入失調電流的溫度漂移(簡稱輸入失調電流溫漂):輸入偏置電流的溫度漂移定義為在給定的溫度範圍內,輸入失調電流的變化與溫度變化的比值。這個參數實際是輸入失調電流的補充,便於計算在給定的工作範圍內,放大電路由於溫度變化造成的漂移大小。輸入失調電流溫漂一般只是在精密運放參數中給出,而且是在用以直流信號處理或是小信號處理時才需要關注。
差模開環直流電壓增益:差模開環直流電壓增益定義為當運放工作於線性區時,運放輸出電壓與差模電壓輸入電壓的比值。由於差模開環直流電壓增益很大,大多數運放的差模開環直流電壓增益一般在數萬倍或更多,用數值直接表示不方便比較,所以一般採用分貝方式記錄和比較。一般運放的差模開環直流電壓增益在 80~120dB之間。實際運放的差模開環電壓增益是頻率的函數,為了便於比較,一般採用差模開環直流電壓增益。
共模抑制比:共模抑制比定義為當運放工作於線性區時,運放差模增益與共模增益的比值。共模抑制比是一個極為重要的指標,它能夠抑制差模輸入==模幹擾信號。由於共模抑制比很大,大多數運放的共模抑制比一般在數萬倍或更多,用數值直接表示不方便比較,所以一般採用分貝方式記錄和比較。一般運放的共模抑制比在80~120dB之間。
電源電壓抑制比:電源電壓抑制比定義為當運放工作於線性區時,運放輸入失調電壓隨電源電壓的變化比值。電源電壓抑制比反映了電源變化對運放輸出的影響。目前電源電壓抑制比只能做到80dB左右。所以用作直流信號處理或是小信號處理模擬放大時,運放的電源需要作認真細緻的處理。當然,共模抑制比高的運放,能夠補償一部分電源電壓抑制比,另外在使用雙電源供電時,正負電源的電源電壓抑制比可能不相同。
輸出峰-峰值電壓:輸出峰-峰值電壓定義為,當運放工作於線性區時,在指定的負載下,運放在當前大電源電壓供電時,運放能夠輸出的最大電壓幅度。除低壓運放外,一般運放的輸出輸出峰-峰值電壓大於±10V。一般運放的輸出峰-峰值電壓不能達到電源電壓,這是由於輸出級設計造成的,現代部分低壓運放的輸出級做了特殊處理,使得在10k負載時,輸出峰-峰值電壓接近到電源電壓的50mV以內,所以稱為滿幅輸出運放,又稱為軌到軌(Raid-To-Raid)運放。需要注意的是,運放的輸出峰-峰值電壓與負載有關,負載不同,輸出峰-峰值電壓也不同;運放的正負輸出電壓擺幅不一定相同。對於實際應用,輸出峰- 峰值電壓越接近電源電壓越好,這樣可以簡化電源設計。但是現在的滿幅輸出運放只能工作在低壓,而且成本較高。
最大共模輸入電壓:最大共模輸入電壓定義為,當運放工作於線性區時,在運放的共模抑制比特性顯著變壞時的共模輸入電壓。一般定義為當共模抑制比下降6dB 是所對應的共模輸入電壓作為最大共模輸入電壓。最大共模輸入電壓限制了輸入信號中的最大共模輸入電壓範圍,在有幹擾的情況下,需要在電路設計中注意這個問題。
最大差模輸入電壓:最大差模輸入電壓定義為,運放兩輸入端允許加的最大輸入電壓差。當運放兩輸入端允許加的輸入電壓差超過最大差模輸入電壓時,可能造成運放輸入級損壞。
2 主要交流指標開環帶寬:開環帶寬定義為,將一個恆幅正弦小信號輸入到運放的輸入端,從運放的輸出端測得開環電壓增益從運放的直流增益下降3db(或是相當於運放的直流增益的0.707)所對應的信號頻率。這用於很小信號處理。
單位增益帶寬GB:單位增益帶寬定義為,運放的閉環增益為1倍條件下,將一個恆幅正弦小信號輸入到運放的輸入端,從運放的輸出端測得閉環電壓增益下降 3db(或是相當於運放輸入信號的0.707)所對應的信號頻率。單位增益帶寬是一個很重要的指標,對於正弦小信號放大時,單位增益帶寬等於輸入信號頻率與該頻率下的最大增益的乘積,換句話說,就是當知道要處理的信號頻率和信號需要的增以後,可以計算出單位增益帶寬,用以選擇合適的運放。這用於小信號處理中運放選型。
轉換速率(也稱為壓擺率)SR:運放轉換速率定義為,運放接成閉環條件下,將一個大信號(含階躍信號)輸入到運放的輸入端,從運放的輸出端測得運放的輸出上升速率。由於在轉換期間,運放的輸入級處於開關狀態,所以運放的反饋迴路不起作用,也就是轉換速率與閉環增益無關。轉換速率對於大信號處理是一個很重要的指標,對於一般運放轉換速率SR《=10V/Μs,高速運放的轉換速率SR》10V/Μs。目前的高速運放最高轉換速率SR達到 6000V/Μs。這用於大信號處理中運放選型。
全功率帶寬BW:全功率帶寬定義為,在額定的負載時,運放的閉環增益為1倍條件下,將一個恆幅正弦大信號輸入到運放的輸入端,使運放輸出幅度達到最大(允許一定失真)的信號頻率。這個頻率受到運放轉換速率的限制。近似地,全功率帶寬=轉換速率/2πVop(Vop是運放的峰值輸出幅度)。全功率帶寬是一個很重要的指標,用於大信號處理中運放選型。
建立時間:建立時間定義為,在額定的負載時,運放的閉環增益為1倍條件下,將一個階躍大信號輸入到運放的輸入端,使運放輸出由0增加到某一給定值的所需要的時間。由於是階躍大信號輸入,輸出信號達到給定值後會出現一定抖動,這個抖動時間稱為穩定時間。穩定時間+上升時間=建立時間。對於不同的輸出精度,穩定時間有較大差別,精度越高,穩定時間越長。建立時間是一個很重要的指標,用於大信號處理中運放選型。
等效輸入噪聲電壓:等效輸入噪聲電壓定義為,屏蔽良好、無信號輸入的的運放,在其輸出端產生的任何交流無規則的幹擾電壓。這個噪聲電壓折算到運放輸入端時,就稱為運放輸入噪聲電壓(有時也用噪聲電流表示)。對於寬帶噪聲,普通運放的輸入噪聲電壓有效值約10~20μV。
差模輸入阻抗(也稱為輸入阻抗):差模輸入阻抗定義為,運放工作在線性區時,兩輸入端的電壓變化量與對應的輸入端電流變化量的比值。差模輸入阻抗包括輸入電阻和輸入電容,在低頻時僅指輸入電阻。一般產品也僅僅給出輸入電阻。採用雙極型電晶體做輸入級的運放的輸入電阻不大於10兆歐;場效應管做輸入級的運放的輸入電阻一般大於109歐。
共模輸入阻抗:共模輸入阻抗定義為,運放工作在輸入信號時(即運放兩輸入端輸入同一個信號),共模輸入電壓的變化量與對應的輸入電流變化量之比。在低頻情況下,它表現為共模電阻。通常,運放的共模輸入阻抗比差模輸入阻抗高很多,典型值在108歐以上。
輸出阻抗:輸出阻抗定義為,運放工作在線性區時,在運放的輸出端加信號電壓,這個電壓變化量與對應的電流變化量的比值。在低頻時僅指運放的輸出電阻。這個參數在開環測試。
3. 運算放大器的對信號放大的影響和運放的選型由於運算放大器晶片型號眾多,即使按照上述辦法分類,種類也不少,細分就更多了,這對於初學者就難免犯暈。本節力求通過幾個實際電路的分析,明確運算放大器的對信號放大的影響,最後總結如何選擇運放。
CA3140的主要指標為:
項目 單位 參數
輸入失調電壓 ΜV 5000
輸入失調電壓溫度漂移 ΜV/℃ 8
輸入失調電流 PA 0.5
輸入失調電流溫度漂移 PA/℃ 0.005
這樣可以計算出,在25℃的溫度下的失調誤差造成的影響如下:
項目 單位 參數
輸入失調電壓造成的誤差 ΜV 5000
輸入失調電流造成的誤差 ΜV 0.0045
合計本項誤差為 ΜV 5000
輸入信號200mV時的相對誤差 % 2.5
輸入信號100mV時的相對誤差 % 5
輸入信號 25mV時的相對誤差 % 20
輸入信號 10mV時的相對誤差 % 50
輸入信號 1mV時的相對誤差 % 500
初步結論是:高阻運放的輸入失調電流很小,它造成的誤差遠遠不及輸入失調電壓造成的誤差,可以忽略;而輸入失調電壓造成的誤差仍然不小,但是可以在工作範圍的中心溫度處通過調零消除。
這樣可以計算出,0~25℃的溫度漂移造成的影響如下:
項目 單位 參數
輸入失調電壓溫漂造成的誤差 ΜV 200
輸入失調電流溫漂造成的誤差 ΜV 0.001
合計本項誤差為 ΜV 200
輸入信號200mV時的相對誤差 % 0.1
輸入信號100mV時的相對誤差 % 0.2
輸入信號 25mV時的相對誤差 % 0.8
輸入信號 10mV時的相對誤差 % 2
輸入信號 1mV時的相對誤差 % 20
初步結論是:高阻運放的輸入失調電流溫漂很小,它造成的誤差遠遠不及輸入失調電壓溫漂造成的誤差,可以忽略;在使用高阻運放時,由於失調電壓溫度係數較大,造成的影響較大,使得它不適合放大100mV以下直流信號。若以上兩項誤差合計將更大。
打開APP閱讀更多精彩內容聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容圖片侵權或者其他問題,請聯繫本站作侵刪。 侵權投訴