目前為止,一篇關於微通道反應器講的最全面的文章內-容源自wiki

2020-12-03 微井科技

作為一個新興熱點學科,微反應器/微通道反應器和其代表的連續化反應趨勢受到越來越多的科研機構和企業的關注。雖然歷經多年的市場培育,但關於該項技術目前的介紹仍然是眾說紛紜,在目前缺少官方、體系介紹的情況下,我們希望以維基百科(Wikipedia)和相關專業文獻為藍本,讓微反應器更加直觀和體系的呈現在您的面前。

以下資料供參詳,能力有限,不足之處歡迎批評指正

1

Instruction

A microreactor or microstructured reactor or microchannel reactor is a device in which chemical reactions take place in a confinement with typical lateral dimensions below 1 mm; the most typical form of such confinement are microchannels.[1] Microreactors are studied in the field of micro process engineering, together with other devices (such as micro heat exchangers) in which physical processes occur. The microreactor is usually a continuous flow reactor[2][3] (contrast with/to a batch reactor). Microreactors offer many advantages over conventional scale reactors, including vast improvements in energy efficiency, reaction speed and yield, safety, reliability, scalability, on-site/on-demand production, and a much finer degree of process control.

微反應器、微觀結構反應器、微通道反應器指的是化學反應在橫向尺寸小於1mm範圍內即可完成,這種結構的最典型代表就是微通道。微反應器是微加工工程領域的學科,同時這個裝置(比如微換熱器)也伴隨著一些物理反應的發生。這種微反應器通常是連續流體反應器(同間歇反應器相對)。微反應器同常規反應設備相比在很多方面都有優勢,不僅體現在換熱效率,反應速度,產率,安全性,穩定性,可監測性,現場/按需生產,並且能夠進行更精細化的生產控制。

2

History

Gas-phase microreactors have a long history but those involving liquids started to appear in the late 1990s.[1] One of the first microreactors with embedded high performance heat exchangers were made in the early 1990s by the Central Experimentation Department (Hauptabteilung Versuchstechnik, HVT) of Forschungszentrum Karlsruhe[4] in Germany, using mechanical micromachining techniques that were a spinoff from the manufacture of separation nozzles for uraniumenrichment.[4] As research on nuclear technology was drastically reduced in Germany, microstructured heat exchangers were investigated for their application in handling highly exothermic and dangerous chemical reactions. This new concept, known by names as microreaction technology or micro process engineering, was further developed by various research institutions. An early example from 1997 involved that of azo couplings in a pyrex reactor with channel dimensions 90 micrometres deep and 190 micrometres wide.

氣相微反應器已經應用了很多年,但那些融合了液相的則是直到上世紀九十年代後期才出現。第一代嵌入了高效能換熱器的微反應器是由德國卡爾斯魯厄研究中心的中央實驗室製造出來的,使用極限微加工技術製造出來的微反應器初始是製造鈾濃縮分離噴嘴的副產品。伴隨著德國和能源技術研發的大量減少,微結構的換熱器唄應用於高放熱和高危化學反應的研究。這種新型的理念,也就是為我們所知的微反應技術或微加工工程,並且伴隨著大量研發機構的應用被進一步提升。一個1997年的早期案例裡我們可以看到在通道尺度90微米深,190微米寬的派萊克斯反應器上偶氮反應已經可以進行。

3

Benefits

Using microreactors is somewhat different from using a glass vessel. These reactors may be a valuable tool in the hands of an experienced chemist or reaction engineer:

不同於使用玻璃容器,微反應器很有可能成為經驗豐富的化學家或反應工程師手中的重要工具。

1

Microreactors typically have heat exchange coefficients of at least 1 megawatt per cubic meter per kelvin, up to 500 MW m3 K1 vs. a few kilowatts in conventional glassware (1 l flask ~10 kW m3 K1). Thus, microreactors can remove heat much more efficiently than vessels and even critical reactions such as nitrations can be performed safely at high temperatures.[5] Hot spot temperatures as well as the duration of high temperature exposition due to exothermicity decreases remarkably. Thus, microreactors may allow better kinetic investigations, because local temperature gradients affecting reaction rates are much smaller than in any batch vessel. Heating and cooling a microreactor is also much quicker and operating temperatures can be as low as 100 °C. As a result of the superior heat transfer, reaction temperatures may be much higher than in conventional batch-reactors. Many low temperature reactions as organo-metal chemistry can be performed in microreactors at temperatures of 10 °C rather than 50 °C to 78 °C as in laboratory glassware equipment.

微反應器的典型特徵就是換熱效率至少1MW m3 K1,高一些的可達到500 MW m3 K1。二普通的玻璃儀器只有1 l flask ~10 kW m3 K1。因此,微反應器能夠比反應釜更高效的散熱,這也使得像硝化這樣的劇烈反應都能夠在高溫狀態下安全進行。熱區溫度和高溫持續時間隨著散熱而顯著下降。所以,微反應器給更佳的動力研究提供了可能,因為反應器溫度梯度對反應速率的影響比任何傳統反應釜都要小。同樣對微反應器的制熱和製冷都更快,甚至操作溫度可以低至-100℃。伴隨著這種超級換熱器的產生,反應溫度可以比傳統反應釜高上很多。很多的低溫反應,如有機金屬化學實驗能夠藉助微反應器在10 °C反應條件下進行,而不必像實驗室的玻璃裝置那樣溫度需要低至50 °C to 78 °C。

2

Microreactors are normally operated continuously. This allows the subsequent processing of unstable intermediates and avoids typical batch workup delays. Especially low temperature chemistry with reaction times in the millisecond to second range are no longer stored for hours until dosing of reagents is finished and the next reaction step may be performed. This rapid work up avoids decay of precious intermediates and often allows better selectivities.[6]

微反應器經常可以連續操作,這使得一些不穩定的中間體的後續合成成為可能,並且避免了一些典型的量產工作耽誤。特別是一些需要以毫秒和秒來衡量的低溫化學反應不再需要存儲數小時直到反應物按計量完成,並且下一步的反應有可能已經開始。這種快速工作單元避免了寶貴的中間體的衰減而且提供了更好的選擇性。

3

Continuous operation and mixing causes a very different concentration profile when compared with a batch process. In a batch, reagent A is filled in and reagent B is slowly added. Thus, B encounters initially a high excess of A. In a microreactor, A and B are mixed nearly instantly and B won't be exposed to a large excess of A. This may be an advantage or disadvantage depending on the reaction mechanism - it is important to be aware of such different concentration profiles.

連續操作和混合使得濃度分布和傳統反應釜相比有著顯著不同。在反應釜體系中,成分A是填滿的而成分B緩慢加入,這就導致B在開始碰到極度過度的A。而在微反應器中,A和B的混合幾乎在瞬間完成,這樣B就不會暴露在大量的A中。這也許是這套反應設置的優勢或劣勢,而關注到這種濃度分布的不同狀態是非常重要的。

4

Although a bench-top microreactor can synthesize chemicals only in small quantities, scale-up to industrial volumes is simply a process of multiplying the number of microchannels. In contrast, batch processes too often perform well on R&D bench-top level but fail at batch pilot plant level.[7]

雖然一臺桌面上的微反應器只可以做小量的化學合成,但要放大到工業需求的數量只是疊加大量的微反應器就足夠了。而與之相對的,我們見過了太多的在反應釜中反應出色但到了工廠批次生產卻失敗的案例。

5

Pressurisation of materials within microreactors (and associated components) is generally easier than with traditional batch reactors. This allows reactions to be increased in rate by raising the temperature beyond the boiling point of the solvent. This, although typical Arrhenius behaviour, is more easily facilitated in microreactors and should be considered a key advantage. Pressurisation may also allow dissolution of reactant gasses within the flow stream.

微反應器內的材料密封通常要比傳統反應釜來的簡單。這使得反應效率的增長伴隨著溫度的上升而提升,甚至可以超過溶劑的沸點。這種典型的阿倫尼烏斯行為在微反應器中的更容易實現同樣是其核心優勢。壓力也許同樣使得在這種流體狀態下反應氣體的消解變成了可能。

4

Problems

Although there have been reactors made for handling particles, microreactors generally do not tolerate particulates well, often clogging.Clogging has been identified by a number of researchers as the biggest hurdle for microreactors[8]being widely accepted as a beneficial alternative to batch reactors.So far, the so-called microjetreactor is free of clogging by precipitating products. Gas evolved may also shorten the residence time of reagents as volume is not constant during the reaction. This may be prevented by application of pressure.

儘管反應器是用來處理顆粒物的,但微反應器一般情況下很難處理好固體顆粒,經常堵塞。雖然相比傳統反應釜是一個不錯的替代,但是堵塞問題已經成為了很多研究人員選擇微反應器的最大阻力。到目前為止,一種叫做噴氣式微反應器可以有效的解決顆粒物堵塞的問題。氣體的參與同樣可能縮短反應物的保留時間,因為反應過程中其體積是不變的。這種現象同樣可能隨著壓力的應用而被阻止。

Mechanical pumping may generate a pulsating flow which can be disadvantageous. Much work has been devoted to development of pumps with low pulsation.A continuous flow solution is electroosmotic flow(EOF).Typically, reactions performing very well in a microreactor encounter many problems in vessels, especially when scaling up. Often, the high area to volume ratio and the uniform residence time cannot easily be scaled.Corrosion imposes a bigger issue in microreactors because area to volume ratio is high. Degradation of few m may go unnoticed in conventional vessels. As typical inner dimensions of channels are inthe same order of magnitude, characteristics may be altered significantly.

機械泵很有可能造成脈動流,而這會產生不良影響。人們已經投入了大量的經歷來研發低脈動流的泵。一種連續流解決方案就是電滲流。顯而易見的,在微反中表現很好的的一些反應在傳統釜中則會碰到很多問題,特別是進行放大時。通常情況下高體積比和均勻的保留時間很難被輕易放大。腐蝕使得微反應器的高體積比面臨著巨大考驗。在傳統反應中一些um兩集的降解很可能被忽視。但在微反應器的管道中這種同樣量級的管道變化,則有可能使得一些特徵明顯變化。

5

'T' reactor

One of the simplest forms of a microreactoris a 'T' reactor. A 'T' shape is etched into a plate with a depth that may be 40 micrometres and a width of 100 micrometres: the etched path is turned into a tube by sealing a flat plate over the top of the etched groove. The cover plate has three holes that align to the top-left, top-right, and bottom of the 'T' so that fluids can be added and removed. A solution of reagent 'A' is pumped into the top left of the 'T' and solution 'B' is pumped into the top right of the 'T'. If the pumping rate is the same, the components meet at the top of the vertical part of the 'T' and begin to mix and react as they go down the trunk of the 'T'. A solution of product is removed at the base of the 'T'.

微反應器的最簡單的結構樣式就是T字形。一個板子上的T字的形狀伴隨著40微米的深度和100微米的寬度:通過在一個密封板的雕刻槽頂部進行密封從而將雕刻路線變成了管道。在蓋板上有三個孔用於校準T字型的頂部左端、頂部右端和底部,這樣流體就可以加入或者消除。溶液A從T字形的左端泵進入,溶液B從右端泵進入,如果泵的進料速率相同,這種反應成分會在T字型的垂直部分頂部相遇並且隨著兩種液體在T字管道內向下,其開始混合而且反應。在T字型的基部我們看到兩種液體變成一種。

6

Application

1

Microreactors can be used to synthesise material more effectively than current batch techniques allow. The benefits here are primarily enabled by the mass transfer, thermodynamics, and high surface area to volume ratio environment as well as engineering advantages in handling unstable intermediates. Microreactors are applied in combination with photo chemistry, electrosynthesis, multicomponent reactions and polymerization (for example that of butyl acrylate). It can involve liquid-liquid systems but also solid-liquid systems with for example the channel walls coated with a heterogeneous catalyst. Synthesis is also combined with online purification of the product.[1] Following Green Chemistry principles, microreactors can be used to synthesize and purify extremely reactive Organometallic Compounds for ALD and CVD[9][10] applications, with improved safety in operations and higher purity products. In microreactor studies aKnoevenagel condensation[11] was performed with the channel coated with a zeolite catalyst layer which also serves to remove water generated in the reaction. The same reaction was performed in a microreactor covered by polymer brushes.[12]

微反應器相比現有的釜式技術在合成材料中更加的高效。這種優勢基礎源於傳質、熱力學和高比表面積,同樣在處理不穩定中間體中有著工程優勢。微反應器被應用於同光化學、電合成、多成分反應以及縮聚反應(比如丙烯酸丁酯的縮聚)。其能夠參與液液反應體系,同樣可以應用於固液反應體系,例如在其管道閉上塗油一種異構催化劑。合成同樣和跟產物的純化有關。通過在合成和純化醛固酮和化學氣相沉積反應的極活性金屬化合物提高反應操作的安全性以及產物的高純度,微反應器展現了其綠色連續流化學的原則。在微反應器的研究中縮合反應藉助著管道上的沸石催化劑而進行,同樣其也出去了在反應中生成的水。這種反應同樣發生在被聚合物刷覆蓋的微反應器中。

2

A Suzuki reaction was examined in another study[13] with a palladium catalyst confined in a polymer network of polyacrylamide and a triarylphosphine formed by interfacialpolymerization:The combustion of propane was demonstrated to occur at temperatures as low as 300 °C in a microchannel setup filled up with an aluminum oxidelattice coated with aplatinum / molybdenumcatalyst:[14]

這種微反應在另一項研究中同樣被印證:一種附著了鈀催化劑的聚丙烯醯胺網狀結構和一種三芳基膦結構通過界面縮合反應:丙烷的燃燒證明了即便在300度的低溫下,一個填滿了塗有鉬催化劑的氧化鋁微通道仍然可以按程序反應。

3

Enzymes immobilized on solid supports are increasingly used for greener, more sustainable chemical transformation processes.Microreactors are used to study enzyme-catalyzed ring-opening polymerization of ε-caprolactone to polycaprolactone. A novel microreactordesign developed by Bhangale et al.[15][16] enabled to perform hetero geneous reactions in continuous mode, in organic media, and at elevated temperatures. Using microreactors, enabled faster polymerization and higher molecular mass compared to using batch reactors. It is evident that similar microreactor based platforms can readily be extended to other enzyme-based systems,for example, high-throughput screening of new enzymes and to precision measurements of new processes where continuous flow mode is preferred. This is the first reported demonstration of a solid supported enzyme-catalyzed polymerization reaction in continuous mode.

酶的固載正在更綠色、更持續的化學轉變過程中使用的越來越多。微反應器通常用於ε--己內酯聚己內酯的酶催化開環縮聚研究中。一種由 Bhangale研發的新型微通道設計是的異相反應能夠在高溫有機相狀態下連續反應。與反應釜相比微反應器使得反應更快速聚合分子量更大。這證實了相似的基於平臺的微反應器能夠應用於其他的酶反應體系中。例如,高通量篩選的新酶和在連續流狀態下的精確控制更容易被選擇。這也是第一例被報導的證實酶催化劑在固載反應可以在連續狀態下進行。

7

Analysis

Microreactors can also enable experiments to be performed at a far lower scale and far higher experimental rates than currently possible in batch production, while not collecting the physical experimental output. The benefits here are primarily derived from the low operating scale, and the integration of the required sensor technologies to allow high quality understanding of an experiment. The integration of the required synthesis, purification and analytical capabilities is impractical when operating outside of a microfluidic context.

微反應器使得實驗在一個相比於傳統反應釜低規模而且高速率情形下完成,而且不需要收集齊物理實驗產物。這種好處主要是在低生產規模下結論和傳感器技術的集成使得反應能夠被理解的更加完善。這種合成、分離和分析能力的集成在微流體狀態之外實現是不現實的。

Researchers at the Radboud University Nijmegen and Twente University, the Netherlands, have developed a microfluidic high-resolution NMR flow probe. They have shown a model reaction being followed in real-time. The combination of the uncompromised (sub-Hz) resolution and a low sample volume can prove to be a valuable tool for flow chemistry.[17] Infrared spectroscopy Mettler Toledo and Bruker Optics offer dedicated equipment for monitoring, with attenuated total reflectance spectrometry (ATR spectrometry) in microreaction setups. The former has been demonstrated for reaction monitoring.[18] The latter has been successfully used for reaction monitoring[19] and determining dispersion characteristics[20] of a microreactor.

荷蘭奈美恩大學和特溫特大學的研究員研發了一種微流體狀態下的高分辨力核磁流體傳感器,這使得反應模擬可以時時進行。這種組赫茲解析度和痕量樣本已經證明是流動化學非常重要的一個工具。紅外光譜梅特勒·託萊多和光譜儀器部為監測提供專用設備,還有衰減全反射光譜(ATR譜)在微反應器反應中也會用到。前一種設備用於表徵反應監測,後面的一種已經成功的應用於反應監測和確定反應器的分散特性。

8

Academic research

Microreactors, and more generally, micro process engineering, are the subject of worldwide academic research. A prominent recurring conference is IMRET, the International Conference on Microreaction Technology. Microreactors and micro process engineering have also been featured in dedicated sessions of other conferences,such as the Annual Meeting of the American Institute of Chemical Engineers (AIChE), or the International Symposia on Chemical Reaction Engineering (ISCRE). Research is now also

conducted at various academic institutions around the world, e.g. at the Massachusetts Institute of Technology (MIT) in Cambridge/MA, University of Illinois Urbana-Champaign, Oregon State University in Corvallis/OR, at University of California,

Berkeley in Berkeley/CA in the United States, at the EPFL in Lausanne, Switzerland, at Eindhoven University of Technology in Eindhoven, at Radboud University Nijmegen in Nijmegen, Netherlands and at the LIPHT [1] of Université de Strasbourg in

Strasbourg and [2] of the University of Lyon, CPE Lyon, France.

微反應器即更通用的微反應工程,是全球範圍內學術機構的科研學科。其中之一的代表組織就是IMRET,國際微反應技術協會。微反應器和微反應工程模塊同樣成為了其他會議組織的特色單元,比如美國化學工程師學會年會,或者化學反應工程國際研討會。相關探索同樣在全世界其他很多組織中展開。在美國麻省理工學院,伊利諾斯大學,俄勒岡州立大學,加利福尼亞大學,加州伯克利;瑞士洛桑EPFL,在荷蘭埃因霍溫大學,奈美恩大學,荷蘭LIPHT;發過斯特拉斯堡大學和裡昂大學。

Depending on the application focus, there are various hardware suppliers and commercial development entities to service the evolving market. One view to technically segment market, offering and market clearing stems from the scientific and technological objective of market agents:

根據重點應用,目前市場上已經擁有了數量眾多的硬體供應商和商業機構來推動服務市場的發展。在技術細分市場的觀點之一就是,提供市場代理的目標所需要的市場清算體系。

a. Ready to Run (turnkey) systems are being used where the application environment stands to benefit from new chemical synthesis schemes, enhanced investigational throughput of up to approximately 10 - 100 experiments per day (depends on reaction time) and reaction subsystem, and actual synthesis conduct at scales ranging from 10 milligrams per experiment to triple digit tons per year (continuous operation of a reactor battery).

準備運行(土耳其)系統唄應用於那些應用於有利於環境標準的新化學合成計劃,通過調查發現其每天可提升大約10-100個實驗每天和反應分體系。

相關焦點

  • 微通道反應器與流動化學在藥物合成中的應用
    引言微通道反應器(Microchannel reactor)是利用精密加工技術製造的特徵尺寸在10到300 μm 之間的微型反應器,通常作為連續流反應器(Continuous flow reactor)來使用(相對於間歇反應器,即Batch reactor
  • 弗魯克FLUKO與天津大學聯合自主研發的FT微通道反應器
    八卦魚形微反應器」FT系列是弗魯克FLUKO與天津大學聯合自主研發的微通道反應器,具有自主智慧財產權(專利設計)。雙方憑藉多年的研究成果、應用經驗以及對過程反應的深刻理解,結合多年的實驗摸索,成功開發設計了「八卦魚形反應器」,在微通道反應器領域中獲得更進一步的提升。
  • 康寧高通量微通道反應器技術在化工生產中的應用暨萬噸級G5新品...
    ,採用康寧G5微通道反應器成功實現了單套年通量萬噸級農藥中間體全連續化生產,成為全球首套康寧萬噸級G5微反應裝置,至今已經安全穩定運行目前有兩條生產線採用了康寧G5反應器,裝置運行半年來安全穩定,各項指標均達到既定目標:實現了重氮化反應 +
  • 目前微通道面臨的限制,突破矽技術的一種新方法
    由電子工程師、材料科學家和微系統技術專家組成的多學科團隊已經研發出一種方法,解決微流控裝置只能在微觀尺度使用的挑戰。如麻省理工學院新聞稿中所述,這樣就能擴大微流控裝置的使用範圍。 目前微通道面臨的限制 微流控裝置是具有微通道的小型系統,可用於化學或生物醫學的測試和研究,如處理微小血滴並進行測試。
  • 康寧反應器技術新產品「連續流微通道光化學反應器「
    康寧連續流微通道光化學反應器 具有160多年歷史的康寧-創新永無止盡。康寧公司應市場的需求,經過康寧反應器技術歐洲研發中心精心的研究和反覆的實驗推出了可用於光化學反應的「可控-高效-連續流」微通道光化學反應器。
  • 沈氏微通道工業化成功應用案例
    近十年來,微反應器技術發展迅速,通過對通道形狀的設計通道尺寸已經延展到毫米級,且能保持微反應器特性以滿足工業化生產的需求,同時實現「尺寸放大」和「數增放大」結合,尤其適用多相難混合、強放熱、難控制的快反應、及中間體不穩定、易燃易爆反應,適用於化工、製藥、染料等領域。
  • 我市召開微通道反應技術推進座談會
    我市召開微通道反應技術推進座談會 發布日期:2020-11-20 11:31 瀏覽次數: 字體:[ 大 中 小 ]
  • 康寧推出單臺年通量萬噸的新型反應器,適用於大規模工業生產
    澎湃新聞記者從連續流反應器技術領先者美國康寧公司(CORNING)方面獲悉,康寧公司日前宣布康寧反應器AFR (Advanced-Flow Reactors) 技術取得了重大進展,推出單臺年通量萬噸的G5反應器。
  • 關於厭氧反應器常用計算公式的匯總!
    目前,厭氧微生物處理是高濃度有機廢水處理工藝中不可或缺的處理工段,它較好氧微生物處理不僅能耗低,同時還可以產生沼氣作為能源二次利用。厭氧反應容積負荷高較好氧反應高出很多,對於處理同等量的COD厭氧反應投資更低。在厭氧反應器的運行中,上升流速、水力停留時間和容積負荷等,那麼這些數據都是如何計算的呢?今天我們就來講一講厭氧反應器日常運行中最常用的5個計算公式。
  • 關於UASB厭氧反應器的22個經典問答!
    但有朋友講:編書也是推動社會進步,貢獻多多。現在老到「不太」走極端了,同意!所以,才有今天的討論。是不是貢獻不敢講,但敢講:「這是心裡話」!應該貪心,它進步的最原始動力,如果索要公開的資料還不能算是貪心呢。認識到「何況知識和技術是要多年的積累的,寶貴的經驗更是積累中的沉澱」。是很難得的,何況,厭氧又是「只能意會,不能言傳」的巫術。無密可保,放開來問。
  • Sanotac高精度平流泵,助力微通道高通量反應器,打造美麗化工
    我們專門配套模塊化微反應系統,微通道反應器,管式反應器,釜式反應器,催化評價裝置,催化加氫裝置,煤化工裝置。微反應器通常含有小的通道尺寸(當量直徑小於500 μm)和通道多樣性,流體在這些通道中流動,並要求在這些通道中發生所要求的反應。這樣就導致了在微構造的化學設備中具有非常大的表面積/體積比率。
  • 基於微通道平板換熱器的相變材料放熱性能影響研究
    目前,關於三水乙酸鈉相變材料研究很多,且多為探究相變材料過冷和相分離問題。相變材料為南瑞集團自主研發的以乙酸鈉為基體的複合相變材料,融化後黏度很大幾乎不發生移動,目前已進行1 500次循環測試。流體從左側進入平板換熱器,對相變材料進行充熱、放熱,換熱後的流體從右側流出。為了對相變換熱單元換熱性能進行優化,本文在普通平板換熱器的基礎上構建了微通道平板換熱器,如圖1(b)所示。
  • 關於機器學習,這可能是目前最全面最無痛的入門路徑和資源!
    但是,各位童鞋,不要慌也不要怕......李傑克有自信這應該是目前你在網上能夠讀到的最全面、最良心、最友好的關於機器學習入門路徑和資源分享的文章了。 關於numpy和panda,我給大家提供一個PPT《機器學習numpy與pandas基礎》,大概100來頁,兩個庫的基本知識都說到了,感覺還不錯,已經放在雲盤裡了。 另外,網上有一篇叫《十分鐘搞定pandas》的文章梳理得還算清晰到位,大家不妨也去讀讀,反正也花不了多少時間。
  • 關於IC、UASB厭氧反應器的調試經驗總結!
    關於IC、UASB厭氧反應器的調試經驗總結!北極星水處理網訊:關於IC、UASB厭氧反應器的調試有哪些經驗值得借鑑?三、正式啟動反應器的步驟及經驗總結1、池內升溫。對反應器的汙泥進行升溫,可以用加熱的清水也可以用稀釋後的低濃度的生產廢水(一般COD<2000mg/l)進行加熱。
  • 內循環(IC)厭氧反應器在廢水處理中的應用
    1  IC厭氧反應器的基本原理及特點1.1IC厭氧反應器的基本原理IC厭氧反應器由兩個UASB反應器上下疊加串聯而成,其高度可達16~25m,高徑比一般為4~8,主要由5個部分組成:布水區、第一反應室、第二反應室、內循環系統和出水區,其中內循環系統是IC工藝的核心結構。IC厭氧反應器的結構示意圖如下。
  • 一篇「睡訓有害」的文章扒皮和科學論文寫作規則
    通過誤讀(甚至是歪曲)論文內容來販賣焦慮博取眼球的人最簡單的做法就是一下子丟一堆論文出來,然後按照自己想要的結論簡單解釋一下對自己有利的資料就下結論。反正最後有一個博眼球的結論,很少有人會有時間去一篇一篇查證那些論文是不是真的像作者講的是這個意思。所以如果大家看到引文很多又不詳細解釋加上結論驚悚的文章一定要格外小心,不要輕易買帳。
  • 通道轉兵,一篇文章帶你讀懂那場「偉大轉折的歷史開端」…
    一、通道轉兵的歷史背景 通道侗族自治縣位於湖南省西南邊陲,懷化市的最南端,地處湘、桂、黔三省交界處,從地理位置上講,那是名副其實的通道。而對於長徵中的黨中央和紅軍來講,卻是避免全軍覆沒、走向勝利的通道。通道轉兵發生在通道,有它的歷史必然性。通道轉兵是一步步形成的,也可以說是一步步被逼出來的。
  • 變容二極體驅動技巧
    電路設計師應當了解使用非易失數模轉換器為變容二極體(作用相當於電壓控制的電容器)提供偏置電壓的好處。本文引用地址:http://www.eepw.com.cn/article/186967.htm  變容二極體在反向偏置電壓下運行,會在PN結附近形成耗盡區(depletion zone)。
  • 釣魚屢試不爽, 一篇關於釣魚的好文章!
    釣魚屢試不爽, 一篇關於釣魚的好文章! 原標題:釣魚屢試不爽, 一篇關於釣魚的好文章!
  • 初三物理同步視頻:比熱容的單位與公式-王尚老師講初中物理
    視頻3:比熱容公式的推導式視頻1視頻2視頻3前面的視頻中王尚老師介紹了比熱容的概念:一定質量的某物質,在溫度升高時吸收的熱量,與它的質量與升高的溫度之比,叫做這種物質的比熱容。比熱容的單位是J/(kg·℃)同學們還應該知道,物體吸熱與放熱是反過程,質量與變化溫度相同,吸放熱量是相等的。水的比熱容:4.2×103J/(kg·℃)色拉油1.97×103J/(kg·℃)比熱容的定義式:c=Q/(m△t);上述比熱容公式中, c比熱容,Q為熱量,m為物體的質量,△t為溫度差。