電鍍廢水中高濃度氨氮深度處理方法研究

2020-11-23 北極星環保網

電鍍廢水中高濃度氨氮深度處理方法研究

北極星水處理網  來源:《工業水處理》

  作者:孫萌萌,劉立忠,孫同華,賈金平  

2019/12/2 17:23:03  我要投稿  

北極星水處理網訊:[摘要] 採用物理和化學方法對電鍍廢水中高濃度氨氮進行處理。 應用響應面法對氨氮吹脫工藝進行優化,在最佳工藝條件下(pH=11、流量 2 L/min、時間 60 min),氨氮去除率為 98%。 吹脫後的廢水經次氯酸鈉深度氧化,結果顯示,次氯酸鈉投加量為 30 mL/L,反應時間為 10 min 時,氨氮去除率達 95.43%。 同時研究了超聲、紫外照射對次氯酸鈉氧化效率的強化效果。 經吹脫和次氯酸鈉處理後的廢水符合《電鍍汙染物排放標準》表 3 氨氮排放限值要求。

[關鍵詞] 吹脫;響應面法;次氯酸鈉;超聲;紫外照射

電鍍行業是國民生產中必不可少的一部分,在電鍍工藝中, 通常需要加大量氨水與銅離子等金屬離子絡合以增強離子的穩定性。大量氨水的使用,造成廢水中氨氮含量嚴重超標,尤其是電鍍槽廢液,氨氮濃度更高,需要採用多種方法組合進行處理,才能使廢液中的氨氮達到廢水的排放要求。 吹脫法是一種常用的脫除高濃度氨氮的有效方法, 該方法不需要添加特殊的藥劑,除氨效果穩定,操作簡單易控制,且吹脫率可達 90%以上,是一種有效的高濃度氨氮廢水的預處理方法。 採用吹脫法脫除高濃度氨氮廢水的研究,主要集中在單因素的研究方面,由於影響吹脫效果的因素比較多,利用響應曲面分析法研究對高濃度氨氮廢液的處理,能夠更加直觀、快速地確定最優吹脫條件,減少工作量,提高實驗效率, 對吹脫後的廢水繼續進行次氯酸鈉氧化法處理後,可使出水達到電鍍廢水排放要求。同時為解決現有工藝單獨使用次氯酸鈉除氨氮時次氯酸鈉消耗量比較高的問題, 筆者研究了超聲和紫外照射對次氯酸鈉氧化的強化促進作用, 以減少次氯酸鈉的用量。

1 材料與方法

1.1 實驗材料

實驗廢水來自某電鍍園區電鍍槽廢液,pH=1,氨氮為 8 615 mg/L,COD 160 000 mg/L。

實驗所用試劑包括:酒石酸鉀鈉,分析純,永華化學科技江蘇有限公司;碘化汞,分析純,永華化學科技江蘇有限公司;碘化鉀,分析純,上海麥克林生化科技有限公司;氫氧化鈉,分析純,上海麥克林生化科技有限公司;濃硫酸,質量分數 98%,國藥集團化學試劑有限公司;次氯酸鈉,分析純,6%~14%活性氯,阿拉丁試劑上海有限公司。

實驗所用設備:ACO-003 電磁式空氣泵,紹興市銀森機電有限公司;LZB-4WB 轉子流量計, 常州斯爾特機電設備有限公司;OHAUS STARTER2100pH 計, 奧豪斯國際貿易上海有限公司;UV-2012PCS 型紫外可見分光光度計,尤尼柯上海儀器有限公司;DANGEP 型紫外燈,波長 253 nm,飛利浦特殊光源上海總經銷;KQ-250B 型超聲波清洗器, 崑山市超聲儀器有限公司。高濃度氨氮廢水處理裝置與流程如圖 1 所示,對氨氮的分析採用納氏試劑分光光度法。

1.2 實驗方法

1.2.1 高濃度氨氮廢水吹脫工藝的確定

根據 Design Expert 8.0.6 中 的 Box-Behnken 模型中心組合實驗設計原理,選取 pH、空氣流量、反應時間為自變量,分別以 A、B、C 表示,以-1、0、+1 分別代表自變量的低、中、高水平,以氨氮去除率為響應值設計實驗,共 17 個實驗點的三因素三水平的響應面分析。 實驗方案中的因素和水平見表 1。

1.2.2 低濃度氨氮廢水次氯酸鈉氧化工藝的確定

在最佳吹脫條件下, 吹脫後氨氮質量濃度仍在180 mg/L 左右,達不到《電鍍汙染物排放標準》(GB21900—2008)表 3(8 mg/L)的排放限值要求,需要對吹脫後的廢水繼續採用次氯酸鈉氧化法處理, 考察NaClO 溶液投加量、廢水 pH、超聲與紫外燈照射對氨氮去除率的影響。

2 結果與分析

2.1 吹脫法

2.1.1 回歸模型的建立及分析

由表 1 得到實驗結果見表 2。

Box-Behnken8.0.6統計軟體通過表 2 得到高濃度氨氮去除率對編碼自變量 A、B、C 二次多項回歸方程:氨氮去除率(%)=98.87-0.28A+0.57B-0.41C-0.083AB-0.073AC+0.18BC-2.69A2-0.39B2-0.9C2。

對該模型進行方差分析及顯著性檢驗, 結果見表 3。

回歸方程的自變量係數不全為零, 且 P<0.05,可認為該模型有意義;P<0.05, 交互影響中 AB、BC顯著。 相關係數 R2Adj 為 0.981 8,說明實驗誤差較小,響應值的變化有 98.18%來自所選變量。 P 越小,說明此項對實驗結果產生的影響意義重大,此實驗中,影響因素大小排序為空氣流速>反應時間>pH。

2.1.2 響應曲面分析與優化

回歸模型的方差分析顯示,AB、BC 的交互作用顯著, 其響應面曲線可以很好地解釋因素的交互作用對氨氮吹脫率的影響。 根據回歸方程做出的 AB、BC 響應面 3D 曲線及等高線如圖 2、圖 3 所示。

由圖 2(a)可以看出,在流量一定時,隨著 pH 的增加,氨氮去除率呈先上升後下降的趨勢。 10<pH<11 時,吹脫率隨著 pH 增加而增加,這是因為在反應NH4++OH- →NH3+H2O 中,隨著 pH 的增加,平衡右移,生成的 NH3 在曝氣攪動下從水中脫除;當 pH>11 時,吹脫率反而降低,這可能是因為釋放的分子態氨已達到最大值,pH 繼續提高已對分子態氨的釋放沒有多大促進作用,隨著氨氮的脫除,廢水的 pH降低,吹脫率即隨之下降。 圖 2(b)的等高線能夠很明確地看出上述得到的結論。

由圖 3(a)可以看出,時間一定時,隨著流量的增加,氨氮去除率呈明顯上升趨勢。 空氣流量增加,增加了氣液的接觸面積, 有利於游離氨從液相向氣相的傳質,吹脫率提高。 流量一定時,隨著吹脫時間的增加,吹脫率呈先升高後降低的趨勢。 這可能是因為隨著時間的增加,生成的游離氨已經不多,故吹脫率下降。 圖 3(b)是圖 3(a)的響應曲面在底面的投影。

2.1.3 最佳吹脫工藝確定及驗證實驗

利用 Design Expert 8.0.6 軟體對實驗條件進行優化,得到在最優條件 pH=11,流量=2 L/min,時間60 min 下,氨氮吹脫率的預測值為 98.976 2%。 根據最佳的反應條件進行驗證,得到氨氮平均吹脫率為98.990 1%,與預測值相近,因此此工藝條件有實用價值。

2.2 次氯酸鈉氧化法

2.2.1 NaClO 溶液投加量對氨氮去除率的影響

調節吹脫後的廢水 pH=9, 反應時間 10 min,考 察 NaClO 溶液(有效氯質量分數為 10%)投加量對氨氮去除率的影響,結果表明,氨氮去除率隨次氯酸鈉溶液的投加量增加而增大,超過 30 mL/L 時,去除率增加不明顯,此時去除率為 95.43%,出水氨氮小於 8 mg/L。

2.2.2 廢水 pH 對次氯酸鈉氧化效率的影響

當次氯酸鈉投加量為 30 mL/L,反應時間 10 min條件下,調節 pH,考察 pH 對次氯酸鈉氧化氨氮效率的影響。 結果表明 pH<4 時,氨氮去除率隨 pH 的增大而提高;pH>4 時,氨氮去除率變化不大,去除率均在 95%以上。

2.2.3 超聲與紫外燈照射對次氯酸鈉氧化氨氮效率的影響

要將本實驗中氨氮質量濃度為 180 mg/L 的廢水降至 8 mg/L 以下, 至少要消耗 10%的次氯酸鈉溶液30 mL/L,為減少次氯酸鈉投加量,取次氯酸鈉投加量為 20 mL/L,分別採用超聲和紫外照射處理廢水,研究二者對次氯酸鈉氧化氨氮效率的影響,結果見圖 4。

由圖 4 可知, 次氯酸鈉氧化氨氮的同時對廢水進行超聲處理,氨氮去除率在 94%以上,其中反應時間在 35 min 效果最好, 氨氮去除率可達 98%;主要原因是超聲對於次氯酸鈉釋放有效氯具有促進作用, 加快了化學反應速率。 35 min 後去除率略有下降,但均維持在 94%以上。

次氯酸鈉氧化氨氮的同時對廢水進行紫外照射, 反應時間在 35 min 時和 110 min 時去除率達到最大,分別為 84%與 86%,但因二者效率相差不大,綜合考慮成本等因素,選取 35 min 作為最佳反應條件。 去除率整體呈現先升高再降低再升高的趨勢。

紫外照射對次氯酸鈉氧化氨氮也具有一定的促進作用,但不如超聲對次氯酸鈉除氯的強化效果好,兩種強化方法對氨氮的去除率均明顯高於單獨使用次氯酸鈉處理廢水時的去除率; 紫外照射的廢水與單獨使用次氯酸鈉處理的廢水氨氮的去除率變化趨勢是一致的。 說明紫外對次氯酸鈉氧化氨氮具有促進作用;三種處理方式都在 35 min 時去除率達到最高,因此採用氧化時間 35 min 作為次氯酸鈉氧化工藝的最佳反應時間。

3 結論

(1)在pH=11,空氣流量 2 L/min,吹脫時間60 min的工藝條件下,吹脫率在 98%以上,可使原水氨氮質量濃度從 8 615 mg/L 降到 180 mg/L 以下。 (2)吹脫後的廢水投加有效氯質量分數為 10%的次氯酸鈉溶液 30 mL/L,氨氮去除率在 95%以上,可使出水氨氮質量濃度低於 8 mg/L。 (3)超聲和紫外照射分別強化次氯酸鈉與單純使用次氯酸鈉脫除氨氮進行比較, 氨氮去除率分別提高 46.11%、9.43%。


原標題:電鍍廢水中高濃度氨氮深度處理方法研究

投稿聯繫:0335-3030550  郵箱:huanbaowang#bjxmail.com(請將#換成@)

北極星環保網聲明:此資訊系轉載自北極星環保網合作媒體或網際網路其它網站,北極星環保網登載此文出於傳遞更多信息之目的,並不意味著贊同其觀點或證實其描述。文章內容僅供參考。

相關焦點

  • 化學法處理氨氮廢水研究進展
    目前國內外對氨氮廢水的處理方法有物理法、化學法以及生物法。本文就化學法處理氨氮廢水熱點問題展開綜述,並展望未來化學法處理氨氮廢水的研究方向。1 電化學氧化法電化學氧化法具有操作簡單、氧化能力強、二次廢料少、佔地面積小等優點。近年來引起了人們的高度重視,被廣泛運用於處理難生物降解有機廢水、垃圾滲濾液、製革廢 水、印染廢水等領域。
  • 高濃度含鉻電鍍廢水處理
    慧聰表面處理網:高濃度含鉻電鍍廢水主要來源於廢鍍液和鍍件清洗水,其中含有大量Cr(Ⅵ),若處理不當將嚴重威脅生態環境。據了解,目前國內很多中、小型電鍍廠都採用最簡單的化學還原法處理高濃度含鉻廢水,產生大量含鉻汙泥,極易造成二次汙染,且需高價轉到有資質的固廢處理單位進行無害化處理,造成大量人力、物力的浪費,並不可取。
  • 低濃度氨氮廢水處理以及廢水中氨氮的測定方法
    蒸汽汽提法由於採用的工作介質是蒸汽,氨自廢水進入蒸汽中,然後在塔頂精餾成為濃氨水回收,因此無需增加後處理工序。蒸汽汽提所需蒸汽體積要比空氣吹脫法中所需空氣體積小得多,因此設備體積較小,佔地面積較少。汽提法比較適用於處理1000mg/L以上的高濃度氨氮廢水,對氨氮的去除率可達99%以上,效率高,技術成熟度好。但是,常規的汽提廢水脫氨技術蒸汽消耗量大,處理廢水單耗比較高。
  • 化學沉澱-吸附法處理電鍍廢水的研究
    【能源人都在看,點擊右上角加'關注'】北極星水處理網訊:摘要:採用化學沉澱-吸附法處理電鍍廢水。首先,採用沉澱劑MgSO4·7H2O和Na2HPO4·12H2O對電鍍廢水進行化學沉澱處理。在優化條件下,氨氮的質量濃度由1 600 mg/L降低至80mg/L以下,磷的質量濃度為75. 82 mg/L然後,採用吸附法對電鍍廢水做進一步處理。最終電鍍廢水中氨氮和磷的殘餘質量濃度均達到《電鍍汙染物排放標準HGB 21900—2008)中規定的要求。
  • 氨氮廢水處理工藝
    氨氮廢水處理技術:目前常見的處理氨氮廢水處理方法主要有吹脫法、化學氧化法、生物法還有膜分離法、離子交換法還有土壤灌溉等。氨氮廢水處理技術和各種方法優缺點:1、化學沉澱法。或者稱為MAP沉澱法,主要是向包含氨氮的廢水當中投加鎂化物和磷酸或者磷酸氫鹽,使得廢水中的NH4+和Mg2+、PO43-在水溶液當中反應形成磷酸鎂沉澱,分子式為MgNH4P04.6H20,從而達到去除氨氮的目的。化學沉澱法處理結果的原因主要有PH值、溫度還有氨氮濃度和摩爾比(n(Mg﹢):n(NH4﹢):n(P04-))等。
  • 有機廢水篇:氨氮廢水處理七大技術及優缺點分析
    氨氮廢水對魚類及某些生物也有毒害作用。另外,當含少量氨氮的廢水回用於工業中時,對某些金屬,特別是銅具有腐蝕作用,還可以促進輸水管道和用水設備中微生物的繁殖,形成生物垢,堵塞管道和設備。處理氨氮廢水的方法有很多,目前常見的有化學沉澱法、吹脫法、化學氧化法、生物法、膜分離法、離子交換法以及土壤灌溉等。本文對氨氮廢水處理方法作一綜述並對各種方法的優缺點進行分析匯總。
  • 氨氮廢水處理方法匯總
    該方法還可以起到殺菌作用,同時使一部分有機物無機化,但經氯化處理後的出水中留有餘氯,還應進一步脫氯處理。因此氯化法一般適用於給水的處理,不太適合處理大水量高濃度的氨氮廢水。2.2化學沉澱法化學沉澱法是往水中投加某種化學藥劑,與水中的溶解性物質發生反應,生成難溶於水的鹽類,形成沉渣易去除,從而降低水中溶解性物質的含量。
  • 東道爾水技術:高氨氮廢水的處理技術
    基於可持續發展觀念,在高濃度氨氮廢水處理方面,不僅要追求高效脫氮的環境治理目標,還要追求節能減耗、避免二次汙染、充分回收有價值的氮資源等更高層次的環境經濟效益目標,才是治理高濃度氨氮廢水的比較理想的技術發展方向。近三十年來,在氨氮廢水、特別是高濃度氨氮廢水的處理技術方而,取得了不斷的進步。
  • 【汙水處理知識篇】化肥廠氨氮廢水該怎樣處理?
    處理此類廢水時,選擇的廢水處理工藝有多種,主要包括:生化法、絮凝沉澱法、吸附法、離子交換法、臭氧氧化法、膜分離技術等,實際應用時,都是多種處理方法相互配合,以達到最佳的處理效果,同時可以最大限度的節約 處理成本。一、化肥廠氨氮廢水的來源化肥廠氨氮廢水主要來自合成氨、尿素車間的高濃度氨氮廢水,這部分廢水氨氮主要存在形式為無機氨。
  • 高低濃度氨氮廢水處理工藝的對比!
    一、高濃度氨氮廢水處理技術1、吹脫法將空氣通入廢水中,使廢水中溶解性氣體和易揮發性溶質由液相轉入氣相,使廢水得到處理的過程稱為吹脫,常見的工藝流程見圖1。但是在大規模的氨吹脫-汽提塔生產過程中, 產生水垢是較棘手的問題。通過安裝噴淋水系統可有效解決軟質水垢問題,可是對於硬質水垢,噴淋裝置也無法消除。此外,低溫時氨氮去除率低,吹脫的氣體形成二次汙染。因此,吹脫法一般與其他氨氮廢水處理方法聯合運用,用吹脫法對高濃度氨氮廢水進行預處理。最佳吹脫工藝條件,見表1。
  • 關於氨氮廢水處理技術的全概述!
    2、沸石吸附利用沸石中的陽離子與廢水中的NH4 進行交換以達到脫氮的目的。沸石一般被用於處理低濃度含氨廢水或含微量重金屬的廢水。然而,蔣建國等探討了沸石吸附法去除垃圾滲濾液中氨氮的效果及可行性。3、膜分離技術利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次汙染。蔣展鵬等採用電滲析法和聚丙烯(PP)中空纖維膜法處理高濃度氨氮無機廢水可取得良好的效果。電滲析法處理氨氮廢水2000~3000mg/L,去除率可在85%以上,同時可獲得8.9%的濃氨水。
  • 如何選擇氨氮去除的方法?
    與有機物相比,汙水中氨氮的去除相當複雜。生化方法經濟,但不適用於中高濃度氨氮廢水。物理化學方法可以處理高濃度的氨氮廢水,但往往是多種方法的組合,而且操作昂貴,有的會產生二次汙染。對於工業廢水,由於氨氮濃度高,建議使用高濃度氨氮廢水的組合進行物理化學處理,然後與其它廢水混合,然後結合常規生化處理,使項目完工後的運營成本可以適當降低。一般來說,如果不需要使用含氮材料,應儘可能使用。必要時,應從上遊減少氨氮排放量;選擇應根據實際情況,歸納思維,技能流程的設計應進行初步測試,然後在測試後開始設計和施工。
  • 吹脫法處理高氨氮廢水
    環保水處理 氨氮廢水處理常用的方法有汽提法、生化法、離子交換法、折點氯化法和磷酸銨鎂沉澱法。目前國內主要採用生化法和汽提法,國外主要採用生化法和磷酸銨鎂沉澱法。汽提法主要用於處理中、高濃度、大流量氨氮廢水。
  • 氨氮廢水處理之 | 空氣吹脫法與汽提法
    用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標準,以免造成二次汙染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣汙染。空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣相的方法。該方法適宜用於高濃度氨氮廢水的處理。
  • 高濃度廢水處理
    北極星水處理網訊:[摘要]:本文主要介紹高濃度廢水的處理[關鍵詞]:高濃度廢水處理、厭氧池、膜-生物反應器前言本次高濃度廢水處理主要針對水性溶劑廢水,日產廢水量10m³,結合處理類似廢水的經驗及現有研究成果,提出相應的綜合汙水處理方案,採用合理而先進的處理工藝,保證出水達到《汙水綜合排放標準》(GB8978-1996)三級標準排放要求
  • 氨氮及危害,五種方法去除廢水中高氨氮
    高氨氮廢水如何處理,著重介紹一下其處理方法:一、物化法1.吹脫法在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關係進行分離的一種方法,一般認為吹脫與溫度、PH、氣液比有關。2. 沸石脫氨法利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。
  • 技術乾貨|膜曝氣生物膜反應器技術應用於高濃度氨氮廢水探討
    技術乾貨|膜曝氣生物膜反應器技術應用於高濃度氨氮廢水探討北極星水處理網訊:1 引言高濃度氨氮廢水採用生化方法處理時,需要較高的供氧量和生物量,因而成為生化處理含氮汙染物的難題之一.傳統的生物脫氮工藝(即硝化-反硝化工藝)普遍存在著佔地面積大、能耗高、外加碳源需求量大及脫氮效率低等不足
  • 電鍍廢水處理的新方法及新工藝研究
    前言  電鍍是利用化學和電化學方法在金屬或在其它材料表面鍍上各種金屬。電鍍技術廣泛應用於機器製造、輕工、電子等行業。  電鍍廢水的成分非常複雜,除含氰(CN-)廢水和酸鹼廢水外,重金屬廢水是電鍍業潛在危害性極大的廢水類別。
  • 汙水處理氨氮去除方法,合適才重要!
    汙水處理氨氮去除方法比較被環保人青睞的有:傳統脫氮工藝、吹脫法及汽提法、液膜法、離子交換、化學藥劑法等。面對這麼多汙水處理氨氮去除方法,我們應該如何選擇適合自己現場的?這些方法各自有何優缺點,我們一起來看看~1傳統脫氮傳統生物脫氮技術是通過氨化、硝化、反硝化以及同化作用來完成。特點1)工藝成熟,適合處理高濃度氨氮汙水;2)工藝流程較長,佔地面積大,基建投資高;3)硝化過程中產生的酸度需要投加鹼中和,不僅增加了處理費用,而且還有可能造成2次汙染。
  • 精讀:電鍍廢水處理十大方法及優缺點分析
    北極星水處理網訊:電鍍廢水的處理與回用對節約水資源以及保護環境起著至關重要的作用。本文綜述了各種電鍍廢水處理技術的優缺點,以及一些新材料在電鍍廢水處理上的應用。 01 化學沉澱法化學沉澱法是通過向廢水中投入藥劑,使溶解態的重金屬轉化成不溶於水的化合物沉澱,再將其從水中分離出來,從而達到去除重金屬的目的。