發光二極體Light-emitting diode

2021-01-17 光電讀書
發光二極體(Light-emitting diode,縮寫為LED),能發光的半導體電子元件,透過三價與五價元素所組成的複合光源。LED作為電子元件早在1962年出現,早期只能夠發出低光度的紅光,被惠普買下專利後當作指示燈利用。及後發展出其他單色光的版本;如今,能夠發出的光已經遍及可見光、紅外線及紫外線,光度亦提高到相當高的程度。隨著白光發光二極體的出現,用途已由初期的指示燈及顯示板等指示用途,逐漸發展至近年的照明用途。
發光二極體只能夠往一個方向導通(通電),叫作正向偏置,當電流流過時,電子與空穴在其內複合而發出單色光,這叫電致發光效應,而光線的波長、顏色跟其所採用的半導體物料種類與故意摻入的元素雜質有關。具有效率高、壽命長、不易破損、反應速度快、可靠性高等傳統光源不及的優點。白光LED的發光效率近年有所進步;每千流明成本,也因為大量的資金投入使價格下降,但成本仍遠高於其他的傳統照明。雖然如此,近年仍然越來越多被用在照明用途上。

2014年憑藉「發明高亮度藍色發光二極體,帶來了節能明亮的白色光源」,日本工程學家天野浩與赤崎勇、中村修二共同獲得諾貝爾物理學獎。

能量轉換效率高(電能轉換成光能的效率) - 也即較省電。

反應時間短 - 可以達到很高的閃爍頻率。

使用壽命長 - 且不因連續閃爍而影響其壽命。

在安全的操作環境下可達到10萬小時的壽命,即便是在50度以上的高溫,使用壽命還有約4萬小時。(螢光燈T8為8000小時、T5為20000小時、白熾燈為1,000 ~ 2,000小時)。

耐震蕩等機械衝擊 - 由於是固態元件,沒有燈絲、玻璃罩等,相對螢光燈、白熾燈等能承受更大震蕩。

體積小 - 其本身體積可以小於2mm。

便於聚焦 - 因發光體積細小,而易於以透鏡等方式達致所需集散程度,藉改變其封裝外形,其發光角度由大角度散射至細角度聚焦都可以達成。

單色性強 - 由於是單一能級光出的光子,波長比較單一(相對大部分人工光源而言),能在不加濾光器下提供多種單純的顏色。

由於LED的驅動電壓較低,一般家用電壓為100V~240V,需要將LED及變壓器包裝為燈泡或燈管才能應用於家中,而在降低成本的考量下,許多市售產品搭配品質較差的變壓器,而加快損壞的可能。

發光二極體光度並非與電流成線性關係,光度調節略為複雜;使用PWM為最低成本的調節亮度方法,但頻率必須夠高才不傷眼(PWM調光是以快速閃爍的方式來調整亮度,例如每隔10次亮一次亮度為最大亮度的10%,但閃爍頻率不高會傷眼,1250Hz以下健康風險高,3250Hz以上則風險與不閃爍的調光方法一樣低;而舊型的螢光燈若用低頻PWM調光則不會那麼傷眼,因為螢光燈有餘暉效應而LED沒有)。

成本較高,售價較高。

因為發光二極體為光源面積小、分布較集中,作照明用途時會刺眼,須運用光學設計分散光源。

每枚發光二極體因生產技術問題都會在特性(亮度、顏色、偏置…等)上有一定差異,即使是同一批次的發光二極體差異也不少。

發光二極體是一種特殊的二極體。和普通的二極體一樣,發光二極體由半導體晶片組成,這些半導體材料會預先透過注入或攙雜等工藝以產生p、n架構。與其它二極體一樣,發光二極體中電流可以輕易地從p極(陽極)流向n極(陰極),而相反方向則不能。兩種不同的載流子:空穴和電子在不同的電極電壓作用下從電極流向p、n架構。當空穴和電子相遇而產生複合,電子會跌落到較低的能階,同時以光子的模式釋放出能量(光子也即是我們常稱呼的光)。

它所發射出的光的波長是由組成p、n架構的半導體物材料的禁帶能量決定。由於矽、鍺是間接帶隙材料,在常溫下,這些材料內電子與空穴的複合是非輻射躍遷,此類躍遷沒有釋出光子,而是把能量轉化為熱能,所以矽和鍺二極體不能發光(在極低溫的特定溫度下則會發光,必須在特殊角度下才可發現,而該發光的亮度不明顯)。發光二極體所用的材料都是直接帶隙型的,因此能量會以光子形式釋放,這些禁帶能量對應著近紅外線、可見光、或近紫外線波段的光能量。發展初期,採用砷化鎵(GaAs)的發光二極體只能發射出紅外線或紅光。隨著材料科學的進步,新研發成功的發光二極體能夠發射出頻率越來越高的光波。現今,已可製成各種顏色的發光二極體。

二極體通常建構於N型襯底,在其表面沉積一層P型半導體,用電極連結在一起。P型襯底比較不常見,但也有被使用。很多商業發光二極體,特別是GaN/InGaN,也會使用藍寶石襯底。大多數用來製成發光二極體的物質具有非常高的折射率。這意味著大部分光波會在物質與空氣的接口會被反射回物質,因此,光波萃取對於發光二極體是很重要的論題,大量研究與發展都聚焦於這論題。

如今Micro LED, OLED等等新的應用也出現(之後有機會分享)。

Long-press QR code to transfer me a reward

As required by Apple's new policy, the Reward feature has been disabled on Weixin for iOS. You can still reward an Official Account by transferring money via QR code.

相關焦點

  • 西安交大科研人員製備具有高穩定性鈣鈦礦藍光電致發光二極體
    西安交大科研人員製備具有高穩定性鈣鈦礦藍光電致發光二極體Highly StablePerovskiteBlue-emitting
  • <課本知識>二極體 英語詞彙
    diode 二極體electrode 電極unidirectional 單向的 單向極的varicap
  • 中國科研人員又一力作,稀土之光:有機發光二極體的新機遇
    自誕生以來,有機發光二極體(Organic light-emitting diode, OLED)在三十年間已經發展成為一個價值數百億美元的產業,並正在逐步改變現代生活。在產業應用中,具有100%激子利用率的高效磷光材料已經能夠滿足三基色紅光和綠光器件的需求,但是較長的激發態壽命(通常長於1微秒)和較高的激發態能量使得基於藍色磷光材料的器件穩定性不佳。
  • Light: 黃維&王建浦|頂發光微腔結構實現高效率鈣鈦礦發光二極體
    近年來,鈣鈦礦發光二極體(PeLED)的器件效率提升迅速,成為下一代照明與顯示技術的有力競爭者。然而,由於鈣鈦礦材料較大的折射率,導致大量的光子被限制在器件內部,阻礙了PeLED效率的進一步提升。傳統的無機發光二極體通常在單晶襯底上通過外延法生長製備,難以獲得大面積柔性器件。近年來快速商業化的有機發光二極體能夠通過溶液法、蒸鍍法製備大面積柔性器件,但有機材料本身的激子特性使其難以在大電流下實現高亮度和高效率。
  • LED燈發光原理、結構、產品分類匯總
    一、led的結構及發光原理 50年前人們已經了解半導體材料可產生光線的基本知識,第一個商用二極體產生於1960年。LED是英文lightemittingdiode(發光二極體)的縮寫,它的基本結構是一塊電致發光的半導體材料,置於一個有引線的架子上,然後四周用環氧樹脂密封,起到保護內部芯線的作用,所以LED的抗震性能好。
  • 頂發光微腔結構實現高效率鈣鈦礦發光二極體
    封面圖(來源):南京工業大學先進材料研究院論文相關信息【論文標題】Microcavity top-emission perovskite light-emittingMicrocavity top-emission perovskite light-emitting diodes. Light Sci Appl 9, 89 (2020).一、導讀金屬滷化物鈣鈦礦材料具有可溶液法製備、高螢光量子效率、高色純度等特點。
  • 學修手機要了解維修的基礎知識二極體一:指南舟手機維修培訓學校
    前面我們講了二極體的外形,這一章我們主要講二極體在電路中的作用。以方便我們來判斷二極體出現的故障更好地幫助我們維修。1,整流二極體整流二極體是利用PN 結合單向導電特性,把交流電變成脈動直流電。整流二極體漏電流較大,多數採用面接觸性料封裝的二極體。整流二極體主要應用在手機的充電電路中。在手機中使用的整流二極體主要是肖基二極體,肖特基二極體是貴金屬(金、銀、鋁、鉑等)為正極,以N型半導體為負極,用二者接觸面上形成的勢壘具有整流特性而製成的金屬-半導體器件。
  • 共價有機框架白光發光二極體的共軛和聚合定向設計
    共價有機框架白光發光二極體的共軛和聚合定向設計 作者:小柯機器人 發布時間:2021/1/7 13:16:08 馬凱特大學Jier Huang團隊開發了一種共價有機框架白光發光二極體的共軛和聚合定向設計策略
  • 【材料】分子鏈長對鈣鈦礦發光二極體穩定性的重要性
    鈣鈦礦由於其出色的光電性能是目前炙手可熱的研究材料,其應用範圍十分廣泛,當中就包含鈣鈦礦發光二極體,近日,香港中文大學趙鈮教授團隊和荷蘭埃因霍溫理工大學陶書霞教授團隊通過對鈣鈦礦表面進行鈍化處理,使鈣鈦礦發光二極體達到了在玻璃基底上創紀錄的高輻射度和使用壽命。
  • 研究人員開發出高效純藍色有機發光二極體
    有機發光二極體(簡稱OLED)以其鮮豔的色彩和可形成超薄甚至柔性器件的能力而聞名,它利用含碳分子將電轉化為光。與液晶技術採用液晶有選擇地阻擋覆蓋多個像素的濾光背光源的發射不同,OLED顯示屏的紅、綠、藍三個獨立的發光像素可以單獨開啟和關閉,從而產生更深的黑色並降低功耗。然而,藍色OLED在效率和穩定性方面一直存在瓶頸,需要在效率、色彩純度、成本和壽命之間進行權衡。
  • 研究人員開發出了基於滷化鈣鈦礦的高效藍光發光二極體
    照明佔全球電力消耗的20%左右,如果所有光源都由發光二極體(LED)組成,這個數字可以降低到5%。然而,目前使用的藍白光LED需要複雜的製造方法,而且價格昂貴,這使得實現全球過渡更加困難。它們具有良好的發光特性,並且易於製造。利用滷素族的元素,即氟、氯、溴和碘,鈣鈦礦可以根據晶體的化學成分被賦予不同的特性。目前已經用鈣鈦礦製造出了綠光和紅光的LED,但至今還缺少一種顏色,即藍色,因此無法實現白光。瑞典林雪平大學的研究人員開發出了基於滷化鈣鈦礦的高效藍光發光二極體。新的LED可能為廉價和節能的照明開闢新的道路。
  • ...自然▪通訊》)報導鈣鈦礦基高效深紅光發光二極體
    由於全無機鈣鈦礦CsPbI3具有合適的帶隙(~1.7eV)和優異的熱穩定性,在光伏電池、發光二極體等光電器件的研究中引起了廣泛的興趣。然而形成具有光電活性的黑相CsPbI3,一般需要高溫退火(300 ~ 370℃)以克服相轉變所需要的能壘。
  • 白皮書 | 量子點材料的研究現狀及在光致發光和電致發光領域的應用
    Remote- type, high-color gamut white light-emitting diode based on InP quantum dot color converters[J]. optical Materials Express, 2014, 4(7): 1297-1302.
  • LED結構、發光原理、光源特點及應用
    一、led的結構及發光原理  50年前人們已經了解半導體材料可產生光線的基本知識,第一個商用二極體產生於1960年。LED是英文lightemittingdiode(發光二極體)的縮寫,它的基本結構是一塊電致發光的半導體材料,置於一個有引線的架子上,然後四周用環氧樹脂密封,起到保護內部芯線的作用,所以LED的抗震性能好。  發光二極體的核心部分是由p型半導體和n型半導體組成的晶片,在p型半導體和n型半導體之間有一個過渡層,稱為p-n結。
  • 我國鈣鈦礦發光二極體外量子效率突破20%
    人民網北京10月11日電(孫競)  由西北工業大學柔性電子研究院首席科學家黃維院士與南京工業大學先進材料研究院常務副院長王建浦教授所帶領的團隊繼2016年提出鈣鈦礦維度調控創造鈣鈦礦發光二極體(LED)效率記錄後,近日利用低溫溶液法,在鈣鈦礦發光層設計上提出了新思路,將近紅外鈣鈦礦
  • 復旦發明新型纖維狀聚合物發光電化學池
    2015年3月23日,部分成果以「A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell」為題發表在《自然-光子學》(Nature Photonics)雜誌(2014年影響因子為29.96)上。