在熔融鹽中電化學裂解甲烷制氫氣
作者:
小柯機器人發布時間:2021/1/14 16:04:43
近日,武漢大學肖巍課題組通過在熔融鹽中電化學裂解甲烷實現了制氫氣。該研究於2021年1月11日發表於國際一流學術期刊《德國應用化學》。
在該研究中,團隊通過在500 °C的熔融鹽中電化學裂解甲烷(ESM),實現了節能、無排放和無水條件下制氫氣。按照甲烷制氫最節能的轉化路線,甲烷在陽極被電化學氧化,並產生二氧化碳和氫氣。在陽極生成的二氧化碳被熔融鹽原位捕獲,並在陰極被還原成固態碳,使陽極產氫和陰極積碳實現空間上的分離。
對該產氫技術的生命周期評估表明,ESM與甲烷蒸汽重整(MSR)相比等效碳排放大大降低,等效能耗則大大低於鹼水電解法。
據介紹,基於甲烷蒸汽重整的工業產氫仍然存在很多挑戰,包括產生大量碳排放,因在催化劑上積碳導致產氫效率鈍化,以及消耗大量水資源等。
附:英文原文
Title: Electrochemical splitting of methane in molten salts to produce hydrogen
Author: Wei Xiao, Zeyu Fan
Issue&Volume: 11 January 2021
Abstract: Industrial hydrogen production based on methane steam reforming (MSR) remains challenges in intensive carbon emissions, retarded hydrogen generation due to coke deposition over catalysts, and huge consumption of water. We herein report an electrochemical splitting of methane (ESM) in molten salts at 500 °C to produce hydrogen in an energy saving, emission‐free and water‐free manner. Following the most energy‐saving route on methane‐to‐hydrogen conversion, methane is electrochemically oxidized at anode to generate carbon dioxide and hydrogen. The generated anodic carbon dioxide is in situ captured by the melts and reduced to solid carbon at cathode, enabling a spatial separation of anodic hydrogen generation from cathodic carbon deposition. Life cycle assessment on hydrogen‐generation technologies shows that the ESM experiences an equivalent carbon emission much lower than MSR, and a lower equivalent energy input than alkaline water electrolysis.
DOI: 10.1002/anie.202017243
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202017243