雷射二極體參數與原理及應用

2020-11-25 電子產品世界

 一、雷射的產生機理
  在講雷射產生機理之前,先講一下受激輻射。在光輻射中存在三種輻射過程,

本文引用地址:http://www.eepw.com.cn/article/169403.htm

  一時處於高能態的粒子在外來光的激發下向低能態躍遷,稱之為自發輻射;
  二是處於高能態的粒子在外來光的激發下向低能態躍遷,稱之為受激輻射;
  三是處於低能態的粒子吸收外來光的能量向高能態躍遷稱之為受激吸收。
  自發輻射,即使是兩個同時從某一高能態向低能態躍遷的粒子,它們發出光的相位、偏振狀態、發射方向也可能不同,但受激輻射就不同,當位於高能態的粒子在外來光子的激發下向低能態躍遷,發出在頻率、相位、偏振狀態等方面與外來光子完全相同的光。在雷射器中,發生的輻射就是受激輻射,它發出的雷射在頻率、相位、偏振狀態等方面完全一樣。任何的受激發光系統,即有受激輻射,也有受激吸收,只有受激輻射佔優勢,才能把外來光放大而發出雷射。而一般光源中都是受激吸收佔優勢,只有粒子的平衡態被打破,使高能態的粒子數大於低能態的粒子數(這樣情況稱為離子數反轉),才能發出雷射。
  產生雷射的三個條件是:實現粒子數反轉、滿足閾值條件和諧振條件。產生光的受激發射的首要條件是粒子數反轉,在半導體中就是要把價帶內的電子抽運到導帶。為了獲得離子數反轉,通常採用重摻雜的P型和N型材料構成PN結,這樣,在外加電壓作用下,在結區附近就出現了離子數反轉―在高費米能級EFC以下導帶中貯存著電子,而在低費米能級EFV以上的價帶中貯存著空穴。實現粒子數反轉是產生雷射的必要條件,但不是充分條件。要產生雷射,還要有損耗極小的諧振腔,諧振腔的主要部分是兩個互相平行的反射鏡,激活物質所發出的受激輻射光在兩個反射鏡之間來回反射,不斷引起新的受激輻射,使其不斷被放大。只有受激輻射放大的增益大於雷射器內的各種損耗,即滿足一定的閾值條件:
P1P2exp(2G - 2A) ≥ 1
(P1、P2是兩個反射鏡的反射率,G是激活介質的增益係數,A是介質的損耗係數,exp為常數),才能輸出穩定的雷射,另一方面,雷射在諧振腔內來回反射,只有這些光束兩兩之間在輸出端的相位差Δф =2qπ q=1、2、3、4。。。。時,才能在輸出端產生加強幹涉,輸出穩定雷射。設諧振腔的長度為L,激活介質的折射率為N,則
Δф=(2π/λ)2NL=4πN(Lf/c)=2qπ,
上式可化為f=qc/2NL該式稱為諧振條件,它表明諧振腔長度L和折射率N確定以後,只有某些特定頻率的光才能形成光振蕩,輸出穩定的雷射。這說明諧振腔對輸出的雷射有一定的選頻作用。
  二、雷射二極體本質上是一個半導體二極體,按照PN結材料是否相同,可以把雷射二極體分為同質結、單異質結(SH)、雙異質結(DH)和量子阱(QW)雷射二極體。量子阱雷射二極體具有閾值電流低,輸出功率高的優點,是目前市場應用的主流產品。同雷射器相比,雷射二極體具有效率高、體積小、壽命長的優點,但其輸出功率小(一般小於2mW),線性差、單色性不太好,使其在有線電視系統中的應用受到很大限制,不能傳輸多頻道,高性能模擬信號。在雙向光接收機的回傳模塊中,上行發射一般都採用量子阱雷射二極體作為光源。
  半導體雷射二極體的基本結構如圖所示,垂直於PN結面的一對平行平面構成法布裡――珀羅諧振腔,它們可以是半導體晶體的解理面,也可以是經過拋光的平面。其餘兩側面則相對粗糙,用以消除主方向外其它方向的雷射作用。
  半導體中的光發射通常起因於載流子的複合。當半導體的PN結加有正向電壓時,會削弱PN結勢壘,迫使電子從N區經PN結注入P區,空穴從P區經過PN結注入N區,這些注入PN結附近的非平衡電子和空穴將會發生複合,從而發射出波長為λ的光子,其公式如下:
λ = hc/Eg (1)
式中:h―普朗克常數; c―光速; Eg―半導體的禁帶寬度。
  上述由於電子與空穴的自發複合而發光的現象稱為自發輻射。當自發輻射所產生的光子通過半導體時,一旦經過已發射的電子―空穴對附近,就能激勵二者複合,產生新光子,這種光子誘使已激發的載流子複合而發出新光子現象稱為受激輻射。如果注入電流足夠大,則會形成和熱平衡狀態相反的載流子分布,即粒子數反轉。當有源層內的載流子在大量反轉情況下,少量自發輻射產生的光子由於諧振腔兩端面往復反射而產生感應輻射,造成選頻諧振正反饋,或者說對某一頻率具有增益。當增益大於吸收損耗時,就可從PN結髮出具有良好譜線的相干光――雷射,這就是雷射二極體的簡單原理
  隨著技術和工藝的發展,目前實際使用的半導體雷射二極體具有複雜的多層結構。
  常用的雷射二極體有兩種:①PIN光電二極體。它在收到光功率產生光電流時,會帶來量子噪聲。②雪崩光電二極體。它能夠提供內部放大,比PIN光電二極體的傳輸距離遠,但量子噪聲更大。為了獲得良好的信噪比,光檢測器件後面須連接低噪聲預放大器和主放大器。
  半導體雷射二極體的工作原理,理論上與氣體雷射器相同。
  雷射二極體本質上是一個半導體二極體,按照PN結材料是否相同,可以把雷射二極體分為同質結、單異質結(SH)、雙異質結(DH)和量子阱(QW)雷射二極體。量子阱雷射二極體具有閾值電流低,輸出功率高的優點,是目前市場應用的主流產品。同雷射器相比,雷射二極體具有效率高、體積小、壽命長的優點,但其輸出功率小(一般小於2mW),線性差、單色性不太好,使其在有線電視系統中的應用受到很大限制,不能傳輸多頻道,高性能模擬信號。在雙向光接收機的回傳模塊中,上行發射一般都採用量子阱雷射二極體作為光源。
  半導體雷射二極體的常用參數有:
  (1)波長:即雷射管工作波長,目前可作光電開關用的雷射管波長有635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm等。
  (2)閾值電流Ith :即雷射管開始產生雷射振蕩的電流,對一般小功率雷射管而言,其值約在數十毫安,具有應變多量子阱結構的雷射管閾值電流可低至10mA以下。
  (3)工作電流Iop :即雷射管達到額定輸出功率時的驅動電流,此值對於設計調試雷射驅動電路較重要。
  (4)垂直發散角θ⊥:雷射二極體的發光帶在垂直PN結方向張開的角度,一般在15?~40?左右。
  (5)水平發散角θ∥:雷射二極體的發光帶在與PN結平行方向所張開的角度,一般在6?~ 10?左右。
  (6)監控電流Im :即雷射管在額定輸出功率時,在PIN管上流過的電流。
  雷射二極體在計算機上的光碟驅動器,雷射印表機中的列印頭等小功率光電設備中得到了廣泛的應用。


相關焦點

  • 雷射二極體原理
    導讀:雷射筆、雷射電筒、雷射印表機等關於雷射類的產品都少不了雷射二極體的存在,那麼雷射二極體是如何工作的呢?和普通光電二極體又有什麼區別呢?接下來本文將疑惑揭曉。
  • 雷射二極體保護電路的設計原理
    雷射二極體本質上是一個半導體二極體,按照PN結材料是否相同,可以把雷射二極體分為同質結、單異質結(SH)、雙異質結(DH)和量子阱(QW)雷射二極體。量子阱雷射二極體具有閾值電流低,輸出功率高的優點,是目前市場應用的主流產品。
  • 雷射二極體基本工作原理
    二、雷射二極體本質上是一個半導體二極體,按照PN結材料是否相同,可以把雷射二極體分為同質結、單異質結(SH)、雙異質結(DH)和量子阱(QW)雷射二極體。量子阱雷射二極體具有閾值電流低,輸出功率高的優點,是目前市場應用的主流產品。
  • 雷射二極體的工作原理
    打開APP 雷射二極體的工作原理 姚遠香 發表於 2019-07-16 15:50:33   雷射二極體就是可以產生雷射的一種半導體二極體,其產生雷射的三個條件是:實現粒子數反轉、滿足閾值條件和諧振條件。
  • 雷射二極體的結構及其工作原理是什麼?
    打開APP 雷射二極體的結構及其工作原理是什麼? 佚名 發表於 2010-02-27 10:14:03 雷射二極體的結構及其工作原理是什麼?雷射二極體的結構圖和符號如圖1所示。
  • 光敏二極體的工作原理_光敏二極體的應用
    打開APP 光敏二極體的工作原理_光敏二極體的應用 發表於 2019-07-03 15:13:19   光敏二極體工作原理   光敏二極體是將光信號變成電信號的半導體器件。
  • 一種雷射二極體精密驅動電路
    、醫療等眾多領域得到了廣泛的應用,成為目前世界上使用量最大的雷射器種類。頻率穩定的窄線寬半導體雷射器在原子和分子光譜學、雷射冷卻、光通訊、光傳感器、雷射幹涉、雷射拉曼光譜、氣體分析和檢測等眾多領域有著廣泛的應用前景。
  • 二極體的參數分類、特性與應用概述
    二極體的特性與應用  幾乎在所有的電子電路中,都要用到半導體二極體,它在許多的電路中起著重要的作用,它是誕生最早的半導體器件之一,其應用也非常廣泛。  二極體的工作原理  晶體二極體為一個由p型半導體和n型半導體形成的p-n結,在其界面處兩側形成空間電荷層,並建有自建電場。當不存在外加電壓時,由於p-n 結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處於電平衡狀態。  當外界有正向電壓偏置時,外界電場和自建電場的互相抑消作用使載流子的擴散電流增加引起了正向電流。
  • 雷射原理及應用分享
    根據這一現象,他們提出了"雷射原理",即物質在受到與其分子固有振蕩頻率相同的能量激勵時,都會產生這種不發散的強光--雷射。1960年5月16日,美國加利福尼亞州休斯實驗室的科學家梅曼宣布獲得了波長為0.6943微米的雷射,這是人類有史以來獲得的第一束雷射,梅曼因而也成為世界上第一個將雷射引入實用領域的科學家。
  • 變容二極體的工作原理、作用及參數
    反偏電壓增大時結電容減小、反之結電容增大,變容二極體的電容量一般較小,其最大值為幾十皮法到幾百皮法,最大區容與最小電容之比約為5:1。它主要在高頻電路中用作自動調諧、調頻、調相等、例如在電視接收機的調諧迴路中作可變電容。一、工作原理變容二極體為特殊二極體的一種。
  • 雷射傳感器的工作原理及其應用
    雷射傳感器由雷射器、雷射檢測器和測量電路組成。雷射傳感器是新型測量儀表,它的優點是能實現無接觸遠距離測量,速度快,精度高,量程大,抗光、電幹擾能力強等。雷射傳感器工作時,先由雷射發射二極體對準目標發射雷射脈衝。經目標反射後雷射向各方向散射。
  • 發光二極體(led)參數特性及應用注意事項
    發光二極體(LED)的原理其發光原理可描述為: 電子(帶負電)多的N (-:negative) 型半導體和空穴(帶正電)多的P (+: positive)型半導體結合而成。發光二極體的參數發光二極體的主要參數有最大工作電流IFM和最大反向電壓URM。發光二極體最大工作電流最大工作電流URM是指發光二極體長期正常工作所允許通過的最大正向電流。使用中不能超過此值,否則將會燒毀發光二極體。
  • TVS瞬態電壓抑制二極體(鉗位二極體)原理參數
    瞬態電壓抑制二極體(TVS)又叫鉗位二極體,是目前國際上普遍使用的一種高效能電路保護器件,它的外型與普通二極體相同,但卻能吸收高達數千瓦的浪湧功率,它的主要特點是在反向應用條件下,當承受一個高能量的大脈衝時,其工作阻抗立即降至極低的導通值,從而允許大電流通過,同時把電壓鉗制在預定水平,其響應時間僅為
  • 普通發光二極體和雷射二極體有什麼區別?
    在發光原理上的差別:LED是利用注入有源區的載流子自發輻射複合發光,而LD是受激輻射複合發光。發光二極體發出的光子的方向,相位是隨機的,雷射二極體發出的光子是同方向,同相位。LED是 Light Emitting Diode(發光二極體)的縮寫。廣泛見於日常生活中,如家用電器的指示燈,汽車後防霧燈等。
  • 雷射二極體泵浦固體雷射器的發展與應用
    雷射二極體泵浦雷射器是近年來國際上發展最快,應用較廣的新型雷射器。他的發展與半導體雷射器發展密不可分。1960年第一臺紅寶石雷射器的問世。1962年第一隻同質結砷化鎵半導體雷射器問世。1976年,實現了用超發光二極體端面泵浦的Nd:YAG雷射器在室溫下連續運行。20世紀80年代以來,半導體雷射器及其陣列的研究工作取得重大突破,極大的推動了固體雷射器件、技術和應用的發展,並帶動了固體雷射器的全面復興。
  • 雷射測距傳感器的原理及應用剖析
    雷射測距傳感器是先由雷射二極體對準目標發射雷射脈衝,經目標反射後雷射向各方向散射。
  • 特殊二極體
    圖12.5.5 雷射二極體雷射二極體的結構圖如圖(a)所示。雷射二極體的物理結構是在發光二極體的結間安置一層具有光活性的半導體,其端面經過拋光後具有部分反射功能,因而形成一光諧振腔。在正向偏置的情況下,LED結髮射出光來並與光諧振腔相互作用,從而進一步激勵從結上發射出單波長的光,這種光的物理性質與材料有關。半導體雷射二極體的工作原理,理論上與氣體雷射器相同。圖(b)是雷射二極體的代表符號。
  • 穩壓二極體的原理,具體應用電路又是什麼樣的?
    2.工作原理穩壓管伏安特性曲線從伏安特性曲線可以看出,正向特性曲線和普通二極體基本一樣,主要是反向特性曲線,我們可以發現,當反向電壓小於擊穿電壓時,二極體屬於高阻狀態,其電流幾乎為0,當反向電壓到達擊穿電壓時,二極體電阻會驟然減小,此時電流迅速增加,但是電壓卻基本維持不變
  • TVS瞬態電壓抑制二極體原理參數
    瞬態電壓抑制二極體(TVS)又叫鉗位二極體,是目前國際上普遍使用的一種高效能電路保護器件,它的外型與普通二極體相同,但卻能吸收高達數千瓦的浪湧功率,它的主要特點是在反向應用條件下,當承受一個高能量的大脈衝時,其工作阻抗立即降至極低的導通值,從而允許大電流通過,同時把電壓鉗制在預定水平
  • 雷射雷達原理、關鍵技術及應用的深度解析
    「雷達」是一種利用電磁波探測目標位置的電子設備.電磁波其功能包括搜索目標和發現目標;測量其距離,速度,角位置等運動參數;測量目標反射率,散射截面和形狀等特徵參數。 傳統的雷達是微波和毫米波波段的電磁波為載波的雷達。雷射雷達以雷射作為載波.可以用振幅、頻率、相位和振幅來搭載信息,作為信息載體。