成功的或然率———從數學角度論證「君子報仇,十年不晚」

2021-02-26 Sugar講故事

       我們看武俠仙俠小說,常看到作者的一貫手法就是,主角身負血海深仇,然後臥薪嘗膽,一路各種奇遇,修習各種絕世武功,收穫各種絕世神兵,最終手刃仇人,和心愛的人沒羞沒臊得過上幸福的日子。

        假如主角沒有臥薪嘗膽,而是一開始就去拼命,會是什麼結局呢?主角卒,全劇終!顯然,這樣是無法展開劇情的,總是會有人在主角衝動的時候出來阻擋一下,說上一句:君子報仇,十年不晚!又或者是:留得青山在,不怕沒柴燒!那麼是不是真的留得青山在,就不怕沒柴燒,是不是真的就君子報仇十年不晚了呢?

         這裡先跟大家算一道題,題是這樣的:0.99的365次方,1的365次方,1.01的365次方,不難,答案分別0.03,1,37.8;而37.8除以0.03等於1260。什麼意思,簡而言之,就是說你每天努力一點點,一年後你的成績將是普通人的37.8倍,將是懈怠的人的1260倍。如果我們把算數擴大10倍,也就是十年報仇呢?0.09的3650次方,1的3650次方,1.01的3650次方又分別是多少呢?不算不知道,一算嚇一跳。0.99的3650次方是1.17乘以10的負16次方趨向於0,而1.01的3650次方則是5929448572069177,整整16位數,一個是小數點後十幾位數趨向於無窮小,一個是小數點前十幾位數,趨向於無窮大,這之間的倍數已經無法計算,高下立判,君子報仇,十年不晚!

       那真的就是君子報仇,十年不晚麼?我們通過數字,可以看出,他存在一個先決條件,也就是必須是大於1,也就是前文說的臥薪嘗膽,假設小於1也就是敵人比我們更努力,那就不要說十年不晚了,就是二十年,三十年也不行,差距會越來越大!正所謂積跬步以至千裡,積怠惰以至深淵。

      所以要想取得最終勝利,我們只能是而且必須是那個1.01甚至是1.02乃至於2,敵人或者說對手才能是那個0.99或者是1。深入研究0.99與1.01的數值關係,越會發現他的積極意義,例如現實工作中,0.99的意義則是盡力而為,1.01則是竭盡全力。用到自身,0.99,1,1.01則某種程度上對應著本我,自我,超我,等等。

       寫在文末:我無意於寫任何雞湯文,只是恰逢年末,恰逢而立之年,而且經歷了一段無視自我,妄圖超我,最終回歸本我的至暗時刻,工作生活都處在一個焦慮迷茫狀態,所以寫下此文以激勵自己不忘初心,努力拼搏,不斷超越!

相關焦點

  • 《夜行動物》演繹了一個君子報仇,十年不晚的寓言
    一個前男友報復女友的驚悚劇情片,演繹了一個君子報仇,十年不晚的寓言。主演是零爛片男星「傑克·吉倫哈爾(Jake Gyllenhaa)」,和《降臨》女主AA姐「艾米·亞當斯(Amy Adams)」,他們是非常吸引眼球和有才華的實用演員。是Tom Ford,沒錯,就是那個讓GUCCI起死回生的時尚教主。
  • 隨機思想:必然數學到或然數學的一次深刻變革
    必然VS或然長期以來,數學的研究對象是必然現象,在一定條件下必然產生某種結果或者必然不發生某種結果,即條件和結果之間存在著必然的因果聯繫,而用以描述和研究必然現象的量及其關係的數學,稱為必然數學,如幾何、代數、微積分等。
  • 玩家秀黑名單備註,君子報仇,十年未晚!
    在地下城的社交模塊中,有一個拉黑名單的功能,一般呢,大家將討厭的人拉進去也就拉進去了,但是這位玩家的操作很不一般,他不僅將人拉進去了,還挨個兒地寫著為什麼要拉進去,也就是那人冒犯他的緣由,這赤裸裸的黑名單,是不是像極了黑店百地的小冊子?說實在呢,在這之前,莽夫都不知道黑名單還有加備註的功能,看來策劃想的還真是周到啊。
  • 4個角度,看數學的發展:數學學科、思想、符號、數學家成長
    數學的發展無非是概念、定理、公式等知識的深入理解和積累,而在這個過程中,伴隨著思想、思維方法,以及組織、工具的發展。在不同的角度,可以把數學劃分為不同的發展階段,比如從學科發展、思想方法、符號使用、數學人才培養等視角,可以看到數學的不同發展階段。
  • 風起蒼嵐:桑冉修為確定,遠超元嬰期修士,風戀晚該怎麼辦呢
    最新漫畫已經明確,桑冉的實力不簡單最新漫畫已經更新了,並且還是以桑冉為主,風戀晚還沒有出場。而在這一話中,桑冉來到嵐淵大會的主要目的就是得到噬土殘金蜈,這可是一隻元嬰中期的妖獸,比裡面的很多人都還要厲害。因為參加嵐淵大會的人都想得到某種機緣,並且躍升為蒼嵐大陸上的一代強者。
  • 「數學及其應用中的若干前沿問題」論證會在我校成功舉行
    2006年10月25日,中國科學院知識創新工程重要方向項目「數學及其應用中的若干前沿問題」論證會在我校東區理化大樓16008室成功舉行。      創新項目「數學及其應用中的若干前沿問題」由數學系和統計與金融系共同申請,項目負責人是我校葉向東教授、楊亞寧教授。項目設置了六個課題:包括現代分析學、數學物理與代數、微分方程和動力系統、計算數學、概率統計基礎理論和生物統計與金融風險分析。
  • 黃藥師不為梅超風報仇,也不拒絕歐陽鋒替侄子的求親,原因為何?
    黃藥師不拒絕和歐陽鋒替侄子的求親,是因為在他心裡,更加喜歡歐陽克,不看好郭靖,並不是怕歐陽鋒才不敢拒絕。至於不為梅超風報仇的原因有好幾個,一來他武功和歐陽鋒在伯仲之間,想要殺掉歐陽鋒是不容易的,二來幾次見面的情況都不適合報仇,再者歐陽鋒最後都瘋瘋癲癲了,黃藥師就放棄了報仇的念頭。
  • 邏輯論證 vs 政治論證
    邏輯論證與實證的區分 | 邏輯論證只處理概念,判斷,推理這些形式化的問題,不處理現實問題,現實中的某個現象和邏輯前提是否一致,不屬於邏輯判斷的環節,屬於實證判斷的環節。進行邏輯論證的時候,在推理環節,是假定如果前提為真,那麼結論會怎樣。
  • 邱禮濤這次的大尺度是數學定律
    片中,邱禮濤在「蒙提霍爾」定律的基礎上構建了一個關於選擇的難題,用「或然率」作為一個待嫁女子綁架案的解謎線索。一遍看不懂也不用懷疑自己的智商,邱禮濤要的就是這種迷之觀感。     人性探討引入數學問題細微末節暗示謎案真相    「一個數學天才,一個待嫁女子,一條』或然率』問題,加入一個代數」,預告片早已把這場密室綁架案的關鍵詞呈現出來。
  • 蜜獾有仇當場報,這種鳥卻會記仇好幾年,連仇人的朋友都不放過
    小編看到的時候也是不由地覺得好笑,當時就覺得這麼會有這麼搞笑而又喜歡打架的動物,簡直令人大吃一驚。其實報仇和記仇這種行為人類都會有,更何況說是動物。在動物界中,報仇和記仇這種行為是很常見的,就好比如非洲草原上的獅子和野牛,獅子們成群結隊去捕捉野牛,而野牛懷恨在心,也會找準機會選擇對落單的獅子下手,這也是一種報仇和記仇。
  • 有準而有不準 從物理學角度探討高爾夫揮桿模型
    海森堡在談到諸如位置與動量,或能量與時間這樣一些正則共軛量的不確定關係時,說:「這種不確定性正是量子力學中出現統計關係的根本原因。」  海森堡測不準原理,是一個創新理念的和諧典範。它把原子物理學與經典線性數學兩門具體的科學學科,用兩者之間的範疇條件裂痕與內容條件分裂的具體內容來客觀的分析了兩門具體學科之間的辯證關係。
  • 最愛記仇的三種動物,睚眥必報的平頭哥都不算啥,第一讓人想不到
    最愛記仇的三種動物,睚眥必報的平頭哥都不算啥,第一讓人想不到你以為只有人小心眼愛記仇嗎?實際上,動物也有這樣的秉性,很多動物就特別的愛記仇,如果有動物不小心招惹到它們,即便追到天涯海角,它們也一定會報仇的。今天小編為大家整理了最愛記仇的三種動物,一起來看看吧!
  • 最強大腦魏坤琳終報一箭之仇,發文暗諷郭敬明:真男人不賣慘!
    那可是香港影壇的一流人物,拿過的大獎數都數不過來,光年紀就比你大著幾輪呢,在他面前抖機靈,你郭敬明那不是找倒黴嗎?所以,小四被爾冬陞懟哭,那真是自找的,怨不得旁人。對於此事,不單單是網友們發表了各自的看法,同時也引來了一些圈內名人的點評。
  • 大儒黃宗羲為父報仇,錐刺魏忠賢黨羽,崇禎讚嘆:忠臣孤子!
    鮮為人知的是,黃宗羲並非手無縛雞之力的書生,他手持鐵錐,為父報仇,更是在歷史上留下一段盪氣迴腸的英雄傳奇!天啟年間,大太監魏忠賢專擅朝政,黨同伐異,唆使黨羽將「東林六君子」和「東林七君子」全部害死。黃尊素被閹黨汙以貪汙之罪,逮捕到北京,關入昭獄,最終被魏忠賢心腹、時任錦衣衛都指揮僉事的許顯純嚴刑拷打而死。
  • 平頭哥是蛇類的天敵,那是沒遇見過亞馬遜森蚺,根本不配擁有天敵
    平頭哥是蛇類的天敵,那是沒遇見過亞馬遜森蚺,根本不配擁有天敵有人說平頭哥是蛇類的天敵,因為平頭哥吃起蛇來就像吃辣條一樣,但其實並不是所有蛇類平頭哥都敢吃,面對很多懷有劇毒的蛇,即便是平頭哥也只能繞道而行。天敵是什麼?
  • 北大數學「拔尖計劃」十年記:打造數學高地 培養一流人才!
    北京大學數學科學學院數學學科「拔尖人才培養計劃」可以說是「一號院系」的築夢計劃計劃實施十年來一系列拔尖人才培養舉措以及自由、包容的學術氛圍目前,拔尖計劃已成功舉辦了一系列的基礎課程改革、拔尖課程、國際短期課程、暑期學校(國際與國內)、國際暑期科研、國際整學期學習計劃、討論班以及學術報告等,通過各種教學形式促進教學方面的建設和發展。
  • 《推理論證》詳細解讀
    【推理·論證】推理,是人們的思維活動過程,是根據幾個已知的判斷,確定得出一個新判斷的思維過程一、分類:(1)合情推理,是由幾個現有的已知判斷,根據個人經驗和認知範圍,確定得出一個新判斷的推理方法;合情推理又分類為歸納推理(歸納推理又分類為,完全歸納推理與不完全歸納推理)和類比推理(2)演繹推理,是由幾個現有的已知判斷,