Megakaryocyte TGFβ1 partitions erythropoiesis into immature ...

2021-02-15 Blood中文時訊

HEMATOPOIESIS AND STEM CELLS| AUGUST 27, 2020

Megakaryocyte TGFβ1 partitions erythropoiesis into immature progenitor/stem cells and maturing precursors

Silvana Di Giandomenico, Pouneh Kermani, Nicole Mollé, Maria Mia Yabut, Ghaith Abu-Zeinah, Thomas Stephens, Nassima Messali, Ryan Schreiner, Fabienne Brenet, Shahin Rafii, Joseph M. Scandura

Blood (2020) 136 (9): 1044–1054.

https://doi.org/10.1182/blood.2019003276

Key PointsAbstract

Erythropoietin (EPO) provides the major survival signal to maturing erythroid precursors (EPs) and is essential for terminal erythropoiesis. Nonetheless, progenitor cells can irreversibly commit to an erythroid fate well before EPO acts, risking inefficiency if these progenitors are unneeded to maintain red blood cell (RBC) counts. We identified a new modular organization of erythropoiesis and, for the first time, demonstrate that the pre-EPO module is coupled to late EPO-dependent erythropoiesis by megakaryocyte (Mk) signals. Disrupting megakaryocytic transforming growth factor β1 (Tgfb1) disorganized hematopoiesis by expanding the pre-EPO pool of progenitor cells and consequently triggering significant apoptosis of EPO-dependent EPs. Similarly, pharmacologic blockade of TGFβ signaling in normal mice boosted the pre-EPO module, leading to apoptosis of EPO-sensitive EPs. Subsequent treatment with low-dose EPO triggered robust RBC production in both models. This work reveals modular regulation of erythropoiesis and offers a new strategy for overcoming chronic anemias.

Subjects:

Hematopoiesis and Stem Cells, Red Cells, Iron, and Erythropoiesis

Topics:

apoptosis, electrophysiological studies, erythroid progenitor cells, erythropoiesis, erythropoietin, flow cytometry, megakaryocytes, mice, stem cells, transforming growth factors

REFERENCES

1.Kassebaum NJ, Jasrasaria R, Naghavi M, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615-624.

2.Le CH. The prevalence of anemia and moderate-severe anemia in the US population (NHANES 2003-2012). PLoS One. 2016;11(11):e0166635.

3.Higgins JM. Red blood cell population dynamics. Clin Lab Med. 2015;35(1):43-57.

4.Sankaran VG, Weiss MJ. Anemia: progress in molecular mechanisms and therapies. Nat Med. 2015;21(3):221-230.

5.Huang J, Tefferi A. Erythropoiesis stimulating agents have limited therapeutic activity in transfusion-dependent patients with primary myelofibrosis regardless of serum erythropoietin level. Eur J Haematol. 2009;83(2):154-155.

6.Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell. 1995;83(1):59-67.

7.Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118(24):6258-6268.

8.Malik J, Kim AR, Tyre KA, Cherukuri AR, Palis J. Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts. Haematologica. 2013;98(11):1778-1787.

9.Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood. 2001;98(12):3261-3273.

10.Ingley E, Tilbrook PA, Klinken SP. New insights into the regulation of erythroid cells. IUBMB Life. 2004;56(4):177-184.

11.Wojchowski DM, Menon MP, Sathyanarayana P, et al. Erythropoietin-dependent erythropoiesis: new insights and questions. Blood Cells Mol Dis. 2006;36(2):232-238.

12.Menon MP, Karur V, Bogacheva O, Bogachev O, Cuetara B, Wojchowski DM. Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis. J Clin Invest. 2006;116(3):683-694.

13.Menon MP, Fang J, Wojchowski DM. Core erythropoietin receptor signals for late erythroblast development. Blood. 2006;107(7):2662-2672.

14.Lévesque JP, Winkler IG. Hierarchy of immature hematopoietic cells related to blood flow and niche. Curr Opin Hematol. 2011;18(4):220-225.

15.Wong P, Hattangadi SM, Cheng AW, Frampton GM, Young RA, Lodish HF. Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes. Blood. 2011;118(16):e128-e138.

16.Tiedt R, Schomber T, Hao-Shen H, Skoda RC. Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood. 2007;109(4):1503-1506.

17.Azhar M, Yin M, Bommireddy R, et al. Generation of mice with a conditional allele for transforming growth factor beta 1 gene. Genesis. 2009;47(6):423-431.

18.Pronk CJH, Rossi DJ, Månsson R, et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell. 2007;1(4):428-442.

19.Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321-1326.

20.Bruns I, Lucas D, Pinho S, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20(11):1315-1320.

21.Lieschke GJ, Grail D, Hodgson G, et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood. 1994;84(6):1737-1746.

22.Mori Y, Chen JY, Pluvinage JV, Seita J, Weissman IL. Prospective isolation of human erythroid lineage-committed progenitors. Proc Natl Acad Sci USA. 2015;112(31):9638-9643.

23.Hu J, Liu J, Xue F, et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood. 2013;121(16):3246-3253.

24.Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci USA. 2009;106(41):17413-17418.

25.Dussiot M, Maciel TT, Fricot A, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med. 2014;20(4):398-407.

26.Fenaux P, Kiladjian JJ, Platzbecker U. Luspatercept for the treatment of anemia in myelodysplastic syndromes and primary myelofibrosis. Blood. 2019;133(8):790-794.

27.Piga A, Perrotta S, Gamberini MR, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia. Blood. 2019;133(12):1279-1289.

28.Platzbecker U, Germing U, Götze KS, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338-1347.

29.Suragani RN, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014;20(4):408-414.

30.Broxmeyer HE, Hangoc G, Zucali JR, et al. Effects in vivo of purified recombinant human activin and erythropoietin in mice. Int J Hematol. 1991;54(6):447-454.

31.Broxmeyer HE, Lu L, Cooper S, Schwall RH, Mason AJ, Nikolics K. Selective and indirect modulation of human multipotential and erythroid hematopoietic progenitor cell proliferation by recombinant human activin and inhibin. Proc Natl Acad Sci USA. 1988;85(23):9052-9056.

32.Brenet F, Kermani P, Spektor R, Rafii S, Scandura JM. TGFβ restores hematopoietic homeostasis after myelosuppressive chemotherapy. J Exp Med. 2013;210(3):623-639.

33.Malara A, Abbonante V, Zingariello M, Migliaccio A, Balduini A. Megakaryocyte contribution to bone marrow fibrosis: many arrows in the quiver. Mediterr J Hematol Infect Dis. 2018;10(1):e2018068.

34.Martyré MC, Romquin N, Le Bousse-Kerdiles MC, et al. Transforming growth factor-beta and megakaryocytes in the pathogenesis of idiopathic myelofibrosis. Br J Haematol. 1994;88(1):9-16.

35.Sheppard D. Transforming growth factor beta: a central modulator of pulmonary and airway inflammation and fibrosis. Proc Am Thorac Soc. 2006;3(5):413-417.

36.Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchenker W, Wendling F. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100(10):3495-3503.

37.Zhou L, Nguyen AN, Sohal D, et al. Inhibition of the TGF-beta receptor I kinase promotes hematopoiesis in MDS. Blood. 2008;112(8):3434-3443.

38.Capitano M, Zhao L, Cooper S, et al. Phosphatidylinositol transfer proteins regulate megakaryocyte TGF-β1 secretion and hematopoiesis in mice. Blood. 2018;132(10):1027-1038.

39.Sakamaki S, Hirayama Y, Matsunaga T, et al. Transforming growth factor-beta1 (TGF-beta1) induces thrombopoietin from bone marrow stromal cells, which stimulates the expression of TGF-beta receptor on megakaryocytes and, in turn, renders them susceptible to suppression by TGF-beta itself with high specificity. Blood. 1999;94(6):1961-1970.

40.Carlino JA, Higley HR, Creson JR, Avis PD, Ogawa Y, Ellingsworth LR. Transforming growth factor beta 1 systemically modulates granuloid, erythroid, lymphoid, and thrombocytic cells in mice. Exp Hematol. 1992;20(8):943-950.

41.Sanjuan-Pla A, Macaulay IC, Jensen CT, et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature. 2013;502(7470):232-236.

© 2020 by The American Society of Hematology

This program is developed by Focus Insight with the permission of American Society of Hematology, Inc. The content are excerpted from the journal Blood. Copyright © 2019 The American Society of Hematology. All rights reserved. 「American Society of Hematology」, 「ASH」 and the ASH Logo are registered trademarks of the American Society of Hematology.

相關焦點

  • 老問題新進展:β2微球蛋白澱粉樣變病
    來自比利時 Louvain 天主教大學的 Michel Jadoul 等總結了近 30 年 β2 微球蛋白澱粉樣變研究進展,發表於 2015 年 9 月的 NDT 雜誌上。 1985 年證實沉積的澱粉樣物質為β2 微球蛋白原纖維,由此改稱為 β2微球蛋白澱粉樣變。 流行病學 組織學證據顯示 β2 微球蛋白澱粉樣變(透析 7 年後比例 90%)遠多於依靠臨床證據的可疑病例(透析 7 年後比例約 20%)。
  • 高原之寶帶你走進:A2β -酪蛋白與人體健康
    高原之寶犛牛奶產自於世界屋脊青藏高原,世界三種源種動物之一:犛牛高原之寶犛牛奶及犛牛奶嬰幼兒配方乳粉富含 A2β-酪蛋白。高原之寶有機全脂犛牛奶粉中 A2β-酪蛋白含量高達 8.1g/100g,佔 β-酪蛋白總量 94%。
  • 什麼是β射線揚塵監測儀,看完你就明白了
    最近很多客戶諮詢小弘β射線揚塵監測儀,今天小弘就給大家講一講這到底是怎樣的一個儀器。  首先我們來看一下什麼是β射線:  百科對β射線的解釋是不是把大家看暈了呢,大家記住幾個關鍵詞就好了,高速運動、電子流、貫穿能力強(好了這是關鍵詞,畫出來要考的哦)。
  • 罕見病藥物「阿加糖酶β」獲批進口,治療法布雷病
    12 月 19 日,賽諾菲子公司 Genzyme 研發的「注射用阿加糖酶β」獲國家藥監局批准