研究揭示野生蝙蝠基於認知圖的導航
作者:
小柯機器人發布時間:2020/7/11 23:19:30
以色列耶路撒冷希伯來大學Ran Nathan、David Shohami以及特拉維夫大學Sivan Toledo研究組合作取得最新進展。他們利用新的高通量追蹤系統揭示野生蝙蝠基於認知圖的導航。該研究於2020年7月10日發表於《科學》。
使用同時高精度和高解析度地追蹤數十隻動物的系統,他們收集了172個大型覓食埃及果蝠的大型數據集,其中包括在4年的3449個夜蝙蝠中收集的1800萬種以上當地信息。詳細的航跡分析,結合易位實驗和詳盡的果樹製圖,發現野蝙蝠很少表現出隨機搜索,而是在目標頻繁,長而直的飛行中反覆覓食,其中包括頻繁的捷徑。
通過模擬、時滯嵌入和其他軌跡分析,排除了基於地圖的替代策略。他們的結果與認知地圖(如導航)的預期相符,並支持先前從圈養蝙蝠獲得的神經生物學證據。
據悉,關於「認知圖」(以空間為中心的表示)的七十年研究取得了關鍵的神經生物學進展,但仍然缺乏自由放養的野生動物的現場證據。
附:英文原文
Title: Cognitive map–based navigation in wild bats revealed by a new high-throughput tracking system
Author: Sivan Toledo, David Shohami, Ingo Schiffner, Emmanuel Lourie, Yotam Orchan, Yoav Bartan, Ran Nathan
Issue&Volume: 2020/07/10
Abstract: Seven decades of research on the 「cognitive map,」 the allocentric representation of space, have yielded key neurobiological insights, yet field evidence from free-ranging wild animals is still lacking. Using a system capable of tracking dozens of animals simultaneously at high accuracy and resolution, we assembled a large dataset of 172 foraging Egyptian fruit bats comprising >18 million localizations collected over 3449 bat-nights across 4 years. Detailed track analysis, combined with translocation experiments and exhaustive mapping of fruit trees, revealed that wild bats seldom exhibit random search but instead repeatedly forage in goal-directed, long, and straight flights that include frequent shortcuts. Alternative, non–map-based strategies were ruled out by simulations, time-lag embedding, and other trajectory analyses. Our results are consistent with expectations from cognitive map–like navigation and support previous neurobiological evidence from captive bats.
DOI: 10.1126/science.aax6904
Source: https://science.sciencemag.org/content/369/6500/188
Science:《科學》,創刊於1880年。隸屬於美國科學促進會,最新IF:41.037