知識貼!PCB射頻電路四大基礎特性

2020-12-14 電子工程專輯

此處將從射頻界面、小的期望信號、大的幹擾信號、相鄰頻道的幹擾四個方面解讀射頻電路四大基礎特性,並給出了在PCB設計過程中需要特別注意的重要因素。

無線發射器和接收器在概念上,可分為基頻與射頻兩個部份。基頻包含發射器的輸入信號之頻率範圍,也包含接收器的輸出信號之頻率範圍。基頻的頻寬決定了數據在系統中可流動的基本速率。基頻是用來改善數據流的可靠度,並在特定的數據傳輸率之下,減少發射器施加在傳輸媒介(transmission medium)的負荷。因此,PCB設計基頻電路時,需要大量的信號處理工程知識。發射器的射頻電路能將已處理過的基頻信號轉換、升頻至指定的頻道中,並將此信號注入至傳輸媒體中。相反的,接收器的射頻電路能自傳輸媒體中取得信號,並轉換、降頻成基頻。


發射器有兩個主要的PCB設計目標:第一是它們必須儘可能在消耗最少功率的情況下,發射特定的功率。第二是它們不能干擾相鄰頻道內的收發機之正常運作。就接收器而言,有三個主要的PCB設計目標:首先,它們必須準確地還原小信號;第二,它們必須能去除期望頻道以外的幹擾信號;最後一點與發射器一樣,它們消耗的功率必須很小。



接收器必須對小的信號很靈敏,即使有大的幹擾信號(阻擋物)存在時。這種情況出現在嘗試接收一個微弱或遠距的發射信號,而其附近有強大的發射器在相鄰頻道中廣播。幹擾信號可能比期待信號大60~70 dB,且可以在接收器的輸入階段以大量覆蓋的方式,或使接收器在輸入階段產生過多的噪聲量,來阻斷正常信號的接收。如果接收器在輸入階段,被幹擾源驅使進入非線性的區域,上述的那兩個問題就會發生。為避免這些問題,接收器的前端必須是非常線性的。


因此,「線性」也是PCB設計接收器時的一個重要考慮因素。由於接收器是窄頻電路,所以非線性是以測量「交調失真(intermodulation distortion)」來統計的。這牽涉到利用兩個頻率相近,並位於中心頻帶內(in band)的正弦波或餘弦波來驅動輸入信號,然後再測量其交互調變的乘積。大體而言,SPICE是一種耗時耗成本的仿真軟體,因為它必須執行許多次的循環運算以後,才能得到所需要的頻率解析度,以了解失真的情形。



接收器必須很靈敏地偵測到小的輸入信號。一般而言,接收器的輸入功率可以小到1 μV。接收器的靈敏度被它的輸入電路所產生的噪聲所限制。因此,噪聲是PCB設計接收器時的一個重要考慮因素。而且,具備以仿真工具來預測噪聲的能力是不可或缺的。附圖一是一個典型的超外差(superheterodyne)接收器。接收到的信號先經過濾波,再以低噪聲放大器(LNA)將輸入信號放大。然後利用第一個本地振蕩器(LO)與此信號混合,以使此信號轉換成中頻(IF)。前端(front-end)電路的噪聲效能主要取決於LNA、混合器(mixer)和LO。雖然使用傳統的SPICE噪聲分析,可以尋找到LNA的噪聲,但對於混合器和LO而言,它卻是無用的,因為在這些區塊中的噪聲,會被很大的LO信號嚴重地影響。


小的輸入信號要求接收器必須具有極大的放大功能,通常需要120 dB這麼高的增益。在這麼高的增益下,任何自輸出端耦合(couple)回到輸入端的信號都可能產生問題。使用超外差接收器架構的重要原因是,它可以將增益分布在數個頻率裡,以減少耦合的機率。這也使得第一個LO的頻率與輸入信號的頻率不同,可以防止大的幹擾信號「汙染」到小的輸入信號。


因為不同的理由,在一些無線通訊系統中,直接轉換(direct conversion)或內差(homodyne)架構可以取代超外差架構。在此架構中,射頻輸入信號是在單一步驟下直接轉換成基頻,因此,大部份的增益都在基頻中,而且LO與輸入信號的頻率相同。在這種情況下,必須了解少量耦合的影響力,並且必須建立起「雜散信號路徑(stray signal path)」的詳細模型,譬如:穿過基板(substrate)的耦合、封裝腳位與焊線(bondwire)之間的耦合、和穿過電源線的耦合。



失真也在發射器中扮演著重要的角色。發射器在輸出電路所產生的非線性,可能使傳送信號的頻寬散布於相鄰的頻道中。這種現象稱為「頻譜的再成長(spectral regrowth)」。在信號到達發射器的功率放大器(PA)之前,其頻寬被限制著;但在PA內的「交調失真」會導致頻寬再次增加。如果頻寬增加的太多,發射器將無法符合其相鄰頻道的功率要求。當傳送數字調變信號時,實際上,是無法用SPICE來預測頻譜的再成長。因為大約有1000個數字符號(symbol)的傳送作業必須被仿真,以求得代表性的頻譜,並且還需要結合高頻率的載波,這些將使SPICE的瞬態分析變得不切實際。


免責聲明:本文系網絡轉載,版權歸原作者所有。如有問題,請聯繫我們,謝謝!


相關焦點

  • 四個方面解讀射頻電路4大基礎特性
    打開APP 四個方面解讀射頻電路4大基礎特性 電源研發精英圈 發表於 2020-12-07 14:54:33 本文從射頻界面、小的期望信號、大的幹擾信號、相鄰頻道的幹擾四個方面解讀射頻電路4大基礎特性,並給出了在PCB設計過程中需要特別注意的重要因素。
  • RF射頻電路設計規範,必看!
    電路市場更加是迅猛增長。但是RF電路的設計就跟電磁幹擾一樣,一直是工程師們最難解決的問題。想要成功設計出一塊好的RF電路,就必須要仔細將整個設計過程中每個步驟和細節都要仔細規劃,穩中求勝。 射頻電路的設計和普通pcb的設計,在理論上有很多的不一樣。首先,射頻電路存在不確定性,但是這並不妨礙我們可以設計出一塊好的射頻電路,其實是射頻電路的設計當中,還是有很多的規則技巧可以使用的。
  • pcb多層線路板多用於哪些地方|pcb線路板分類
    PCB就很好的做到了室內空間/特性和可信性的規定。並並不是每一個家用電器都必須線路板,簡易的家用電器能夠 不用電源電路如電機。但有特殊作用的家用電器一般必須線路板才可以完成如電視,錄音機,電腦上等好多好多。電飯鍋底端也是有PCB板,散熱風扇中的調速電機。
  • PCB制板的基礎知識
    Mark點;pcb雙面都有貼片件時,則pcb的兩面都按此條加Mark點。pcb應採用拼板方式,從目前pcb翅曲程度考慮,最佳拼接長度約為200mm,(設備加工尺寸:長度最大為330mm;寬度最大為250mm),在寬度方向儘量不拼以防止在生產過程中彎曲。
  • 高頻PCB設計:射頻電路的布局的走線
    2、在RF走線的拐角處通過放置元件或者圓弧走線的方式來降低特性阻抗突變造成的影響 還是圍繞老wu第一點說的【避免特徵阻抗突變 4、射頻巴倫差分走線要保持對稱 設計高頻電路時,必須注意同一電路部分的接線。
  • 射頻電路中無源器件特性
    電路中的應用十分廣泛,它可以用於濾波器調頻、匹配網絡、電晶體的偏置等很多電路中,因此很有必要了解它們的高頻特性。電容等效電路表示法同樣可以得到一個典型的電容器的阻抗絕對值與頻率的關係。如下圖所示,由於存在介質損耗和有限長的引線,電容顯示出與電阻同樣的諧振特性。
  • 射頻晶片基礎知識科普
    無線通信系統中,一般包含有天線、射頻前端、射頻收發模塊以及基帶信號處理器四個部分。隨著5G時代的,天線以及射頻前端的需求量及價值均快速上升,射頻前端是將數位訊號向無線射頻信號轉化的基礎部件,也是無線通信系統的核心組件。
  • 模組射頻電路PCB設計方案
    模組射頻電路PCB設計方案 佚名 發表於 2020-03-04 08:36:13 隨著物聯網技術的興起,現在的電子產品搭載無線通訊功能是越來越普遍了,而無線通訊技術是依賴於
  • 電巢:射頻電路PCB設計有哪些難點?如何改善?
    射頻(RF)PCB 設計,在目前公開出版的理論上具有很多不確定性,常被形容為一種「黑色藝術」。通常情況下,對於微波以下頻段的電路( 包括低頻和低頻數字電路), 在全面掌握各類設計原則前提下的仔細規劃是一次性成功設計的保證。對於微波以上頻段和高頻的PC 類數字電路,則需要2~3 個版本的 PCB 方能保證電路品質。
  • 電巢學堂:詳解射頻電路中的電阻,電容和電感
    電阻,電容和電感是電子線路中最常用的元器件,在低頻電子線路或者直流電路中,這些元器件的特性很一致。但是在射頻電路中又會是什麼情況呢?今天我們就雷振亞老師的《微波工程導論》一書的介紹,繼續學習射頻電路基礎中的基礎。
  • 「射頻電路電子設計自動化的關鍵技術研發與應用」助力我國射頻...
    人民網上海9月18日電 射頻電路是廣泛應用於無線通信中的集成電路,上至衛星通信,下至手機、WiFi、共享單車,處處都有射頻電路的身影。設計是射頻產業鏈的源頭,射頻電子設計自動化(EDA)軟體是射頻電路設計的使能端,也是射頻產業的重要基石。 但是射頻EDA具有技術門檻高、難度大、成果積累時間長、用戶慣性大、見效周期慢的特點。
  • EDA365:射頻RF電路的PCB設計要點,年底溫故而知新
    射頻電路的PCB設計對於一般人來說總是那麼的神密,有很多方面需要考慮。一般人因為知識,經驗的不足,一些方面的知識沒學過或沒經歷過,只有理論知識,在實際應用中沒碰到過,讓他無從下手。亦或就是亂畫一通,只要連通就算完成。
  • 電巢:射頻和數模電路PCB一般布局設計指南
    另外還應明確主要射頻器件功率、散熱、增益、隔離度、靈敏度等指標以及濾波、偏置、匹配電路的連接,對功放電路還應得到器件手冊推薦的匹配走線要求或射頻場分析軟體仿真得到的阻抗匹配電路指導。 3,偏置電路的饋電電感布局:不要與射頻通道平行,最好與射頻線垂直。 4,儘可能地把高功率RF 放大器(HPA)和低噪音放大器(LNA)隔離開來,讓高功率RF 發射電路遠離低功率RF 接收電路。5,RF 輸出端儘量遠離RF 輸入端,防止輸出信號串到輸入端。
  • 射頻低噪聲放大器電路的結構設計
    本文引用地址:http://www.eepw.com.cn/article/259590.htm1、射頻LNA設計要求低噪聲放大器(LNA)作為射頻信號傳輸鏈路的第一級,它的噪聲係數特性決定了整個射頻電路前端的噪聲性能
  • "射頻電路電子設計自動化的關鍵技術研發與應用"助力射頻領域自主...
    上海熱線報導 射頻電路是廣泛應用於無線通信中的集成電路,上至衛星通信,下至手機、WiFi、共享單車,處處都有射頻電路的身影。我國射頻電路行業起步比較晚,與國外存在較大的差距,想要彌補差距,需要在設計、製造、測試和應用多方面共同發力。
  • PCB Layout工程師面試經驗分享,值得大家參考!
    另外,如果有經驗的Layout工程師的話,應該在EMC、安規、高速信號、射頻等方面有所積累,這些經驗也是很好的加分點。如果是沒有經驗的PCB Layout工程師,或者完全沒有接觸過的。那麼就根據崗位的要求來展現你的特質,比如PCB Layout是一個需要仔細和耐心的工作,所以在面試中要體現出你的性格適合這項工作。
  • PCB射頻電路電源和接地的設計方法解析
    射頻(RF)電路的電路板布局應在理解電路板結構、電源布線和接地的基本原則的基礎上進行。本文探討了相關的基本原則,並提供了一些實用的、經過驗證的電源布線、電源旁路和接地技術,可有效提高RF設計的性能指標。考慮到實際設計中PLL雜散信號對於電源耦合、接地和濾波器元件的位置非常敏感,本文著重討論了有關PLL雜散信號抑制的方法。
  • 基於Ansoft Designer的射頻功放電路阻抗匹配優化
    仿真結果表明射頻功放電路的增益得到了明顯的提高,反射係數得到了顯著的改善,達到了阻抗匹配優化設計的目的。  關鍵詞: Ansoft Designer; 射頻功率放大電路; 微帶傳輸線; 阻抗匹配網絡; 計算機仿真   近年來,無線通信的蓬勃發展,極大地推動了射頻集成電路的設計與研究。在處理射頻電路的實際設計問題時,總會遇到一些非常困難的工作,電路的阻抗匹配就是其中之一。
  • 射頻低噪聲放大器電路設計詳解
    射頻LNA設計要求:低噪聲放大器(LNA)作為射頻信號傳輸鏈路的第一級,它的噪聲係數特性決定了整個射頻電路前端的噪聲性能,因此作為高性能射頻接收電路的第一級
  • 電子電路基礎知識
    電子電路基礎知識電路基礎知識(一)電路基礎知識(1)——電阻 導電體對電流的阻礙作用稱著電阻,用符號R表示,單位為歐姆、千歐、兆歐,分別用Ω、KΩ、MΩ表示。