一、關於9的數學速算技巧(兩位數乘法)
關於9的口訣:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81
小學一年級可能只學了加法,二年級第一學期數學就要學乘法口訣了。
其實很多家長可能在小朋友沒上學時就教會了上面的口訣了。
但是小朋友有沒有再細看一下上面的口訣有什麼特點呢?
從上面的口訣口有沒有看到從1到9任何一個數和9相乘的積,個位數和十位數的和還是等於9。
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9
或許小朋友們會問,發現這個秘密有什麼用呢?
我的回答是很有用的。這是鍛鍊你們善於觀察、總結、找出事物規律的基礎。
下面我們再做一些複雜一點的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
關於兩位數的乘法,可能要等到3年級才能學到,但小朋友是不是看到了上面的題目中,前面的乘數都是9的倍數,而且個位和十位的和都等於9。
這樣我們能不能找到一種簡便的算法呢?也就是把兩位數的乘法變成一位數的乘法呢?
我們先把上面這些數變一變。
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我們再把上面的數變一變好嗎?
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
當然如果知道口訣你們可以直接把18 = 2 × 9
這裡主要是為了讓小朋友學會把一個數拆來拆去的
同樣的方法你們可以拆出下面的數,也可以背口訣,你們自己回去練習吧。
27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
為了找到計算上面問題的方法,我們把上面的式子再變一次。
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
現在我們來算上面的問題:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
括號裡的加法小朋友們應該會了吧,那是一年級就會了的。
120 - 12 = 108;
這樣就有了
18 × 12 = 2 × 108 = 216
是不是把一個兩位數的乘法變成了一位數的乘法?
而且可以通過口算就得出結果?小朋友們可以自己試一試嗎?
我用這種方法教威威算乘法,他只需要我算這一個,後邊的題目就自己會算了。
上面我們的計算好象很麻煩,其實現在總結一下就簡單了。
看下一個題目:
27 × 12 = 3×(10-1)× 12 = 3 ×(120- 12)
= 3 × 108 = 324
36 × 12 = 4×(10-1)× 12 = 4 ×(120- 12)
= 4 × 108 = 432
小朋友發現什麼規律沒有?下面的題目好象不用算了,都是把前面的數加1再乘108
45 × 12 = 5 × 108 = 540
54 × 12 = 6 × 108 = 648
63 × 12 = 7 × 108 = 756
72 × 12 = 8 × 108 = 864
81 × 12 = 9 × 108 = 972
我們再看看上面的計算結果,小朋友發現什麼了嗎?
我們把一個兩位數乘法變成了一位數的乘法。其中一個乘數的個位和十位的和等於9,這樣變化以後的數中一位數的那個乘數,都是正好比前面的乘數大1。
而後面的一個兩位數也有一個特點,就是一個連續數(12),1和2是連續的。
能不能找到一種更簡便的計算方法呢?
為了找到一種更簡便的算法。我在這裡給小朋友引入一個新的名詞——補數
什麼是補數呢?因為這個名詞很簡單,所以就算是幼兒園的小朋友也很快會明白的。
1 + 9 = 10;2 + 8 = 10;3 + 7 = 10;4 + 6 = 10;5 + 5 = 10;
6 + 4 = 10;7 + 3 = 10;8 + 2 = 10;9 + 1 = 10;
從上面的幾個加法可見,如果兩個數的和等於10,那麼這兩個數就互為補數。
也就是說1和9為補數,2和8為補數,3和7為補數,4和6為補數,5的補數還是5就不用記了,只要記4個就行了。
現在我們再看看上面的計算結果:
拿一個 63 × 12 = 7 × 108 = 756 舉例吧
結果的最前面一個數是7(不用管它是什麼位),是不是正好等於第一個乘數(63)中前面的數加1? 6 + 1 = 7
結果的後兩位怎麼算出來的呢?如果拿這個7去乘後面那個乘數(12)的最後一位的補數(8)會是什麼? 7 × 8 = 56
呵呵,我們現在不用再分解了,只要把第一個乘數(63)中前面的數加1就是結果的最前面的數,再把這個數乘以後面那個乘數(12)的最後一位的補數(8)就得到結果的後兩位。
這樣行嗎?如果行的話,那可真是太快了,真的是速算了。
試一試其他的題:
18 × 12 =
第一個乘數(18)的前面的數加1:1 + 1 =2 ——結果最前面的數
拿2去乘第二個乘數(12)的後面的數(2)的補數(8):2×8=16
結果就是 216。看一看上面對嗎?
27 × 12 =
結果最前面的數——2 + 1 =3
結果最後面的數——3 ×8 = 24
結果 324
36 × 12 =
結果最前面的數——3 + 1 =4
結果最後面的數——4 ×8 = 32
結果 432
45 × 12 =
結果最前面的數——4 + 1 =5
結果最後面的數——5 ×8 = 40
結果 540
54 × 12 =
結果最前面的數——5 + 1 =6
結果最後面的數——6 ×8 = 48
結果 648
63 × 12 =
結果最前面的數——6 + 1 =7
結果最後面的數——7 ×8 = 56
結果 756
72 × 12 =
結果最前面的數——7 + 1 =8
結果最後面的數——8 ×8 = 64
結果 864
81 × 12 =
結果最前面的數——8 + 1 =9
結果最後面的數——9 ×8 = 72
結果 972
計算結果是不是和上面的方法一樣?
小朋友從結果中還能看出什麼?
是不是計算結果的三位數的和還是等於9或者是9的倍數?
自己算一下看是不是?
看我這篇文章的小朋友,下面我給你們出幾個題,看你們掌握了方法沒有。
54 × 34 = ? 18 × 78 = ? 36 × 56 = ?
72 × 89 = ? 45 × 67 = ? 27 × 45 = ? 81 × 23 = ?
通過這個題目,我主要是為了讓小朋友能從一個題目中舉一反三,舉一反十
從中發現規律性的東西。這樣不需要做太多的題目就可以快速掌握數學的加、減、乘、除運算。
上面的題目如果再擴展一下,把後面的連續數擴大到多位數。
如:123、234、345、2345、34567、123456、23456789等等
看一看有沒有什麼運算規律,或許你們都能找出快速的計算方法。
如果能的話,象
63 × 2345678 =
這樣的題目你們用口算就能快速計算出結果來。
我相信只要不斷總結科學的方法,個個小孩都是天才!
素材來源於網際網路,如有侵權,請及時聯繫刪除
微信公眾號:taishanmuzhe
即時消息微信公眾號:tsmuzhe
QQ:2096454088
最強大腦交流群群號:453904555
專家免費諮詢電話:13105380226
總校總機:0538-8665556
校區地址:東嶽大街125號鹽業大廈5層
手機版官網:m.jnsjqt.com
世紀七田國際全腦教育―――記憶力、專注力超速閱讀訓練專家!
籤約培訓效果:
五分鐘讀十萬字書並現場複述!
五分鐘背30-100個陌生單詞!
點擊「閱讀全文」,了解詳情