林麗珍:
馮老師今天的講座既有理論的高度,又有很多生動的例子。這五個教學策略不僅有助於培養孩子的合情推理能力,也能從特殊到一般,培養孩子的抽象、建模能力。此外,如果再仔細琢磨馮老師舉的這些例子肯定還會有新的收穫!
湯其鳴:
理性是數學學科的特質,但聽了馮特今天的分享與思考,讓我再次認識到數學更是一門溫情的學科,通過今天合情推理的思考與實踐的學習,讓我們更加明白了如何去豐富學生的探究歷程,如何去引導學生撥開雲霧見天,如何去與學生靜待花開,做深度的思考與學習。
王春珍:
平時上課,可能我都有在培養孩子的推理能力,但是不清楚我們用什麼推理,今天,聽了馮老師的分享,我豁然開朗。原來推理≠驗證,推理=發現問題,演繹推理與合情推理從結論、特徵是不同的,而合情推量中的科學歸納推理是學生從合理推理走向演繹推理的中轉站。
陳莉群:
馮老師結合豐富、翔實的教學案例,分享了他對「合情推理」的理解。其深入淺出的講解,不僅讓我們對「合情推理」這一概念有了更深的認識,同時也深刻地認識到,在教學中應引導學生進行合情推理,培養學生思必有源、言必有據的思維品質,才能真正落實學生的數學核心素養。
鄭月珍:
教學思想方法的滲透從來不是一蹴而就,馮老師準備大量教學實錄多角度全方位對「合理推理」進行剖析,讓我由之前對學生推理能力培養的一系列問題由「」霧裡看花」到「撥開雲霧見月明」。
孫娟娟:
「合情推理」,想說愛你不容易!通過馮老師的理論結合實例的分析,讓本對「合情推理」似懂非懂的我,了解更深!晚上的學習受益匪淺!
王明濱:
謝謝馮特的分享。演繹推理之所以是必然性,是因為它建立在正確結論的基礎上,而合情推理的或然性是因為它結論存在著不確定性。所以,我認為合情推理與演繹推理最大的不同,不在於對與錯,而是推理的途徑不同。一個是由特殊到一般(或特殊),另一個是由一般到特殊。
吳建富:
馮老師的講座,對「合情推理」予以深入淺出地闡述,彌補了我對此領域本體性知識的薄弱之處。小學數學的教與學,從來就不缺少合情推理,只是我們一直未能用心「對待」。曹培英老師曾言道:沒有推理,就沒有真正的數學學習。基於此,我們應從教學實際出發,靈活選用推理方法,基於學生的數學認知水平,儘可能地啟發學生知其然而知其所以然。
杜端萍:
「歸納推理是發現知識的推理,演繹推理是驗證知識的推理」,馮老師一語中的解釋了演繹推理和歸納推理的區別,生動而深入地向我們詮釋什麼是合情推理?如何培養合情推理能力?特別是培養學生的推理能力,馮老師舉了很多教學實例,又幽默的結合一些生活例子,很受益。
顏乙紅:
聽了馮特的講座,對「深入淺出」似乎有了進一步的理解。那就是通過豐富的、有針對性的的案例進行「合情推理」,把冰冷的美麗,化為火熱的課堂。而做數學的有心人,不斷地反思,不斷地改進,不斷研究,形成自己觀點。這應該就是一個由特殊到一般的「演繹推理」的過程,這也許是教師成長的路徑之一吧。
蔡海蘭:
聽了這個關於推理的講座,徹底佩服於馮老師紮實的一線教學專攻以及豐富的理論學識修養。馮特用自身的經驗驗證數學教學的生涯演繹推理:符合留心數學知識本質和廣泛閱讀研究相關領域著作的條件,就能在數學教學中獲得更多的收穫。這更加激勵我靜下心來思量、閱讀,沉澱積累。
江 挺:
一直認為「演繹推理」要到中學才會得到體現。聽了馮老師的講座,突然間頓悟,原來小學階段也是可以滲透「演繹推理」的。「知其然,並且知其所以然」科學歸納推理——合情推理向演繹推理過渡的一個重要表現。邏輯推理能力,受用終身。
陳洪南:
今晚馮老師的講座不只是純理論的交流,更是結合了豐富的案例進行講解,這對於初入教育沒幾年的我來說真是猶如天降甘霖,受益匪淺。今晚的講座讓我更加明白培養學生推理能力的重要以及如何去豐富學生的探索過程。
鄭曉婧:
聽了馮老師的講座,使我明白「知其然,且知其所以然」,是合情推理向演繹推理過渡的重要表現。因此,我在以後教學中不應滿足於外在形式的觀察、比較、分析,歸納出概念、規律等,而應基於學生實際,致力於引導學生明事理、究本質, 再進行科學歸納,提高學生歸納推理的能力。
林順水:
推理是一種抽象的思維。在平常教學中,我們都在有意無意中滲透推理的思想。但從來沒有用心去悟透邏輯推理的概念,以及其理論體系。馮老師結合自己的教學,把豐富的理論與實踐相結合,用鮮活的例子為迷茫的老師們生動闡明什麼是邏輯推理。如何培養合情推理的能力以及教學策略。聽講座後讓我們有撥雲見月,柳暗花明之感。從講座中,可以感受馮老師是一位善講道理,「明白」之師。