請點擊上方藍字「高中知識小課堂」關注,獲取更多知識!
一、充分條件和必要條件
當命題「若 A 則 B」為真時,A 稱為 B 的充分條件,B 稱為 A 的必要條件。
二、充分條件、必要條件的常用判斷法
1.定義法:判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關係畫出箭頭示意圖,再利用定義判斷即可。2.轉換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。3.集合法
在命題的條件和結論間的關係判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:
若A⊆ B,則p是q的充分條件。
若A⊇B,則p是q的必要條件。
若A=B,則p是q的充要條件。
若A ⊈B,且B⊉A,則p是q的既不充分也不必要條件。
三、知識擴展
1.四種命題反映出命題之間的內在聯繫,要注意結合實際問題,理解其關係(尤其是兩種等價關係)的產生過程,關於逆命題、否命題與逆否命題,也可以敘述為:(1)交換命題的條件和結論,所得的新命題就是原來命題的逆命題;
(2)同時否定命題的條件和結論,所得的新命題就是原來的否命題;
(3)交換命題的條件和結論,並且同時否定,所得的新命題就是原命題的逆否命題。
2.由於「充分條件與必要條件」是四種命題的關係的深化,他們之間存在這密切的聯繫,故在判斷命題的條件的充要性時,可考慮「正難則反」的原則,即在正面判斷較難時,可轉化為應用該命題的逆否命題進行判斷。一個結論成立的充分條件可以不止一個,必要條件也可以不止一個。