怎麼做到用二元一次方程,準確預估出了雙十一成交量?

2020-12-11 鳥哥筆記

作者:愛書 來源:鳥哥筆記

無論是運營、推廣人員,還是產品經理,相信電商行業的小夥伴在雙十一過後做的第一件事就是復盤整個活動數據,從整個營銷漏鬥的源頭到末端,逐一分析每個環節的數據情況,目的是沉澱總結經驗以指導下次活動。

可是很多時候我們並不知道在活動開始前的策略是否正確,還需要通過在活動過後得到數據的加以驗證才行,這樣就導致了驗證成本較高,需要用真金白銀來驗證當時的想法策略正確與否,造成了「事後諸葛亮」的處境。

那麼有什麼辦法可以在活動之前就能大概預估活動的效果,並根據預估情況做策略調整,避免不必要的預算浪費呢?

說到這裡可能有的朋友會想到一些算法模型來做效果預估,那作為絕大多數運營來說,去從頭學Python這樣程式語言然後搭建一套算法模型顯然也是效率不高的。

那麼還有什麼其他簡單的辦法來實現嗎?答案是有的。

二元一次方程相信我們每個人都會做,初一數學知識(初中數學不及格的現在吃虧了吧),只要運用二元一次方程就可以預估出我們雙十一的成交量。

筆者接下來通過自己親身經歷的項目經驗來介紹下如何用二元一次方程預估出雙十一期間的成交量。

首先介紹下我當時的業務背景:我負責某平臺的信息流推廣工作,通過線上廣告來吸引用戶留下銷售線索,接著線索分配給銷售,然後促進成交。流程如下:

業務背景:信息流廣告推廣——客戶留資——線索分配——銷售跟進——促成成交

先來介紹2個數據維度:

1.線索生命周期:通過線上廣告投放獲得到的一條客戶留資線索,線索也是有生命周期的,超過了線索的生命周期,線索能帶來的價值就微乎其微了,不同行業的線索生命周期也有所不同;

2.線索生命周期內當月轉化率:線索在生命周期內第一個月產生的成交佔比整個生命周期內總共帶來的成交量。

數據統計

數據維度1:線索生命周期

統計時間:半年

統計維度:成交周期、成交數量

繪製圖表:

從數據圖表可以看出線索的生命周期大概在3個月,超出3個月所帶來的價值並不多了,且在線索產生當月的價值最高。

(舉一反三:線索生命周期內,成交數量呈現一定的數據比例規律,那麼反推出成交成本也是同的數據比例規律,即:當月的成交成本會在隨著時間的推移,在線索生命周期內逐月遞減,這也是我們常說起的溯源成本)

數據維度2:線索生命周期內當月轉化率

統計時間:半年

統計維度:線索生命周期內總成交、線索當月成交量、當月線索量,線索生命周期轉化率,線索當月轉化率

(線索生命周期轉化率=線索生命周期總成交/當月線索量;線索當月轉化率=線索當月成交量/當月線索量)

繪製圖表:

從表中可以得出線索生命周期內平均轉化率為:0.59%,線索當月平均轉化率為:0.27%

構建模型

KPI:根據業務要求,雙十一成交成本要在10000以下

公式:雙十一預熱總花費 / 老線索帶來的成交量+活動預熱期帶來的成交量< 10000

公式拆解:

根據我們之前說的線索生命周期,可以得知線索的生命周期為3個月。

所以雙11的成交主要來源9月份的線索和10月份的線索和雙十一預熱期的線索(這裡交代一個背景,該渠道在10月份沒有投放,所以並無線索產生,所以以雙十一為時間原點向前倒推,成交周期在15-30時段為空擋,同理如果10月產生線索,用同樣的方法預估出10月的線索在雙十一產生的發力)

所以我們只需算出9月的那批線索在雙十一共能產生多少成交,在加上整個雙十一活動期間內共帶來的成交量即可預估出雙十一期間共能成交多少,下面我們按照上圖的分析思路逐一推算。

預估9月老線索成交量

從第一步數據統計中我們得出了索生命周期內平均轉化率為:0.59%,且已知9月的線索截止目前已發生成交360,下面根據公式可預估9月老線索在整個雙十一活動期間內能帶來多少成交:

9月線索餘量在雙11成交預估=9月線索量 * 線索生命周期內最終轉化率 – 已成交的數量

114576 * 0.59% - 360=316

故:9月老線索在雙十一活動期間功能成交316

預估活動預熱期帶來的成交量

公式:雙十一預熱總花費 / 老線索帶來的成交量+活動預熱期帶來的成交量< 10000

設:雙十一預熱總花費為X,活動預熱期帶來的成交量為Y

已知:線索當月成交的線索轉化率為:0.27%,線索成本40(投放到一定體量,線索成本基本是一個常數值)

列出二元一次方程:

X / (316+Y) <10000 ①

X /40 *0.27%=Y ②

X<9723076

Y=656

故:雙十一期間預熱總花費應不超過9723076,預估雙十一期間總共成交316+656=972

最終雙十一實際成交數據:979

9月老線索在雙十一期間成交(10.25-11.11)

預估:316

實際成交:313

雙十一活動線索成交(10.25—11.11)

預估:656

實際成交:666

從實際數據可以看出最終雙十一的活動成交量與當時預估的成家量實際誤差僅差7臺!此模型後續又預估了次年6.18的成交量,模型沿用至今。

總結

一、數據統計

1.線索生命周期

2.線索生命周期轉化率

3.線索當月轉化率

二、構建模型

1.公式拆解

2.列出方程式組

寫在最後

最後想通過本文中介紹的方法論體現出的兩種比較重的運營思維:1.數據思維,2流程化思維

1.流程化思維:

在前文中構建模型部分,我們就要運用到流程化思維,從公式出發,並將公式拆解,拆解成最小的單元,然後我們在把這些最小的單元逐一攻破。

可是有很多時候我們所接觸的項目都是不能用公式來表達的,那怎麼辦呢?

首先把事項原委從源頭到結尾,按照流程順序一一列舉出來,並按照每個環節要做的事情記錄清楚,包括每個階段的工作產出及結果匯報。

這一步要做到2個事無巨細:1流程上不要有遺漏的環節,每個可能發生的環節都考慮進去,2.每個環節下可能發生所有的細節要提前想到且記錄。這一步做好可提升自己工作節奏感。

2.數據思維:

數據思維我相信所有網際網路人都不陌生,因為我們網際網路人每天實在和太多的數據打交道。

在這裡我想結合上文的內容來介紹下我運用的一些數據分析思路和方法:首先我們做數據分析一定要有一個明確的目標,這裡很多新人會有一個誤區就是為了做數據分析而分析,什麼意思呢?

就是目標不明確,不知道想通過數據分析得到什麼結果,這裡我們要結合流程化思維,先梳理業務,找到我們要分析的數據指標,然後在根據這個目標去統計和計算相關的數據維度。

這樣分析得到的結果才是我們最想要的可輔助業務決策的數據結果

下一篇我們來講講活動過後效果廣告投放的復盤,如何根據活動數據尋找出規律拆解成模型,以便指導下次活動有節奏的放量,把每一分推廣預算都花在刀刃上。

相關焦點

  • 包學習 | 一次函數與二元一次方程
    (1)二元一次方程有兩個未知數,而一次函數有兩個變量;(2)二元一次方程是用一個等式表示兩個未知數的關係,而一次函數既可以用一個等式表示兩個變量的關係,又可以用列表法或圖像法表示兩個變量的關係.(單選題)下列圖像中,以方程y-2x-2=0的解為坐標的點組成的圖像是(  )
  • 二元一次方程與一次函數
    學生的知識技能基礎:學生能夠正確解方程(組),初步掌握了一次函數及其圖像的基礎知識,已經具備了函數的初步思想,對於數形結合的數學思想也有所接觸。學生的活動經驗基礎:學生能夠根據已知條件準確畫出一次函數圖象,能夠認識和接受函數解析式與二元一次方程之間的互相轉換。在過去已有經驗基礎上能夠加深對「數」和「形」間的相互轉化的認識,有小組合作學習經驗。
  • 二元一次方程(組)含參問題
    二元一次方程(組)中經常會出現含有參數的題目,在解決這類問題之前,我們首先要搞清楚什麼是未知數?什麼是參數?二元一次方程(組)中的「元」就是未知數的意思,所謂的「二元」就是兩個未知數,我們常用x、y、z來表示。
  • 初一數學——二元一次方程組是二元一次方程的組合嗎?
    應該是「含有未知數的項的次數」,這和「未知數的次數」是不一樣的,比如xy=1是二元二次方程,而不是二元一次方程(含有未知數的項是xy,單項式的次數為指數和,是二次)。例1、下列方程中是二元一次方程的有____________(填序號).
  • 初中數學之二元一次方程1
    我們前面已經講過一元一次方程的相關知識點和解法。今天與大家分享的是方程的另一個大的組成部分:二元一次方程。什麼是二元一次方程呢?同一元一次方程一樣,二元一次方程也是含有未知數的等式,滿足等式成立的未知數的值叫做方程的解。
  • 2015中考數學知識點歸納:二元一次方程
    代入消元法:把二元一次方程組中一個方程的未知數用含另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解。這個方法叫做代入消元法,簡稱代入法。   (3)解出這個一元一次方程,求出x的值,即「解」。
  • 一元一次太貴,免費詳解二元一次方程相關概念,掌握易錯點
    二元一次方程的概念,需要把握三個方面的條件:(1)「二元」就是指方程中有且只有兩個未知數.(2)「未知數的次數為1」是指含有未知數的項(單項式)的次數是1.(3)二元一次方程的左邊和右邊都必須是整式.三者缺一不可。 二元一次方程的解,注意是一對數值。一般用大括號聯立起來,一般情況下,二元一次方程有無數個解,即有無數多對數適合這個二元一次方程。
  • 【複習專題】解析二元一次方程知識點及應用
    之前的文章內容中我們先後講述了有關一元一次方程和一元二次方程的內容,那麼,我們接著來學習有關二元一次方程的知識點:複習要求1、認識二元一次方程(組);2、了解二元一次方程(組)的解以及求二元一次方程的正整數解;3、解決有關二元一次方程(組)的實際應用。
  • 中考數學重點方程講解分析,如何學好二元一次方程(組)
    無論是在平時的數學學習期間,還是中考複習階段,大家一定要理解和掌握好二元一次方程(組)的基本概念,提高知識的應用能力等等,這樣才能真正學好知識,學會「用」知識。如可以從以下幾個方面入手:1、理解二元一次方程和二元一次方程組的概念.
  • 2018中考數學知識點:二元一次方程
    下面是《2018中考數學知識點:用間接配方法解一元二次方程》,僅供參考!   二元一次方程:     如果一個方程含有兩個未知數,並且所含未知項都為1次方,那麼這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。二元一次方程組,則一般有一個解,有時沒有解,有時有無數個解。
  • 初一數學知識點:二元一次方程的概念
    二元一次方程的定義:含有兩個未知數,並且未知數的項的次數都是1,像這樣的方程叫做二元一次方程。   二元一次方程組的定義:把具有相同未知數的兩個二元一次方程合在一起,就組成了一個二元一次方程組。
  • 二元一次方程知識梳理及錯題分析
    二元一次方程是七年級下冊第二章的內容,是在七年級上冊學習了一元一次方程之後遇到的第二類方程。和一元一次方程的學習路徑類似,我們先掌握了二元一次方程(組)的概念、什麼是二元一次方程(組)的解,然後學習二元一次方程組的解法,最後是二元一次方程組的應用。
  • 七年級下冊數學,二元一次方程學習指南
    教材首先從一個籃球聯賽中的問題入手,引導學生直接用x和y表示兩個未知數,並進一步表示問題中的兩個等量關係,得到兩個相關的方程。然後,教科書以這兩個具體方程為例,讓學生體驗二元一次方程、二元一次方程組的特徵,歸納出二元一次方程組及其解的概念,並估算簡單的二元一次方程(組)的解。
  • 初一數學:二元一次方程基礎知識典型例題
    1,像這樣的方程叫做二元一次方程.要點二、二元一次方程的解 一般地,使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的一組解.   要點詮釋:   (1)二元一次方程的解都是一對數值,而不是一個數值,一般用大括號聯立起來,如:
  • 二元一次方程組:看錯了方程,怎麼辦?
    學生做題不認真,看錯方程怎麼辦?下面我們來看兩道例題,看錯方程,如何求出原方程?如何求出原方程的解?例1、甲乙兩人共同解方程組①Ax+By=2②Cx-3y=-2,甲正確解得x=1,y=-1,乙抄錯C,解得x=2,y=-6,求A,B,C的值。
  • 二元一次方程(組)知識點、例題
    二元一次方程組,在絕大多數教材都是初一下冊學習,當然也有八上學的比如北師大版。
  • 深入理解二元一次方程的解(1)——二元一次方程組(3)——尖子生之路[七下系列]
    【例2】已知關於x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,當a每取一個值時,就有一個方程,而這些方程有一個公共解,試求出這個公共解.a﹣1)x+(a+2)y+5﹣2a=0,當a每取一個值時,就有一個方程,而這些方程有一個公共解,試求出這個公共解.
  • 2018中考數學知識點:二元一次方程的解法
    下面是《2018中考數學知識點:二元一次方程的解法》,僅供參考!   二元一次方程的解法     1、直接開平方法:     直接開平方法就是用直接開平方求解二元一次方程的方法。用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±根號下n+m.
  • ——二元一次方程
    如果一個方程含有兩個未知數,並且所含未知項的次數都為1次,那麼這個整式方程就叫做二元一次方程,有無數個解,若加條件限定有有限個解。二元一次方程的一般形式:ax+by+c=0其中a、b不為零,這就是二元一次方程的定義。
  • 用平方差公式和因式分解法求二元一次方程的解
    所有的二元一次三項式都可以寫成a(x+e)(x+f)的形式嗎?若可以,是否能找到不同於配方法求解二元一次方程解的方法?是否有一種方法可以幫助我們把任意一個二元一次方程,寫為最高次數為一次的幾個因式乘積的形式。