前兩篇中我講到合情推理和演繹推理是數學發展過程中發揮重要作用的兩種推理方法。其中合情推理是發散性的猜想,是由特殊到一般或由特殊到特殊的推理,其正確性是未知的。因此我們需要證明合情推理的正確性,於是藉助於演繹推理三段論的方法來證明。
演繹推理三段論是一個已知大前提和條件中的小前提來推導結論的一種方法,通常用一次這種方法只能證明題目中的一部分,需要順序使用多次才能得到最終的結果。整個解題過程中,可能需要多個已知的大前提和小前提分別證明結果的每個部分,也可能將上次三段論的結論當作大前提或小前提來迭代使用,無論哪種方式,都是演繹推理證明過程的表現形式。題目的求解過程本質上就是將已知條件分解成一個個大小前提、將它們組合成三段論的過程。
下圖為三段論的使用方式1
下圖為三段論的使用方式2
因此,學習數學,不僅要掌握足夠多的定理和公式(大前提)、理解並提煉題目中的已知條件(小前提),還要學會如何構建它們之間的推導關係、使用三段論來進行邏輯嚴謹的推導。
本文由小朱與數學原創,歡迎關注,帶你一起長知識!